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ABSTRACT 

The reliability of future general-purpose processors ( G PPs) is threatened by a combination 

of factors like shrinking transistor size, higher clock rates, and reduced supply voltages. It is 

predicted that the occurrence of soft errors will dramatically increase as these trends continue. 

It is necessary that the processors be covered from the effects of transient faults with predictable 

minimal impact on performance. Such a predictable impact would allow the processor to be 

employed in real-time applications. In this thesis, we propose a superscalar architecture based 

on checkpointing buddy cache architecture. This architecture keeps the execution of tasks free 

from soft errors by detecting the fault in the execution state and resetting the state of the 

processor to last known fault free state. 

Our scheme minimizes the overhead of checkpointing by eliminating the unnecessary check-

points. We added checkpointing buddy cache (CBC), a small fully associative cache, that works 

in parallel with the data cache. Whenever there is a need for replacing a dirty line from the 

data cache, then instead of writing it to main memory and taking a checkpoint, it is written to 

CBC. The checkpoint is taken when the CBC is filled with dirty lines. The results show that 

the number of checkpoints required for the checkpointing buddy cache architecture (CBCA) is 

103 to 803 less than the conventional cache checkpointing architecture. The cache miss rate 

for our scheme is also reduced up to 263 as compared to base processor. The number of check-

points and miss rate were found to decrease with the increase in the size of CBC. However, 

the access time for CBC of size 32 lines was found to be greater than the data cache, thus 

making CBC of size greater than 32 impractical. CBCA provides fault tolerant mechanism to 

protect the processor against soft errors, while providing task execution time similar to base 

processor. 
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CHAPTER 1. Introduction 

1.1 Background 

Throughout history, the human beings have made tools and devices that assist them to 

survive and to improve their performance. The computer is one of their latest inventions. 

The computers have found their use in a large varity of systems that assist humans. Their 

applications range from small toys to space stations. As humans are becoming more and 

more dependent on computer-based systems, increasing attention is being paid not only to 

the processors' computing speed, but also to their dependability as well as predictability of 

execution times. 

1.1.1 Processor Speed 

Architectural and technological innovations have enabled the development of powerful mi-

croprocessors that can execute several instructions concurrently at a very high clock-rate. 

With the availability of ample on-chip hardware resources, researchers are proposing aggres-

sive micro-architectures that can execute large number of instructions every clock-cycle. Both 

density and cycle time of memory is improving every year, thus improving the overall speed of 

the system. This development is keeping pace with Moore's law, which states that computation 

speed and memory capacity double every 18 months. Technological advancements in general 

purpose processor (GPPs) and onchip memories have significantly increased the speed and 

density of these components. This tremendous improvement in the performance of computer 

is mainly due to decrease in feature size. This progress in computer performance is made while 

maintaining, or even increasing, the reliability of the individual components. 
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1.1.2 Dependability 

Dependability is the quality of service provided by a particular system. Reliability, avail-

ability, safety, maintainability, performablity, and testability are examples of measures used 

to quantify the dependability of a system. Among these, reliability and availability are most 

frequently used dependability measures. Reliability is the probability of continuous operation 

over an interval of time, where as availability is the probability of the system being operational 

at any given instant. 

Unstable environmental conditions can generate temporary hardware failures in computers, 

even if they are shipped with no design errors or manufacturing defects. These failures are 

termed as transient faults or soft errors. According to Siewiorek and Robert[ll], transient 

faults are much more frequent, than any other kind of faults. An error is simply defined as an 

inappropriate change in the value of a signal (i.e. from high to low, or from low to high). 

1.1.2.1 Sources of Soft error 

In [1], it is shown that particles such as alpha and gamma, cosmic rays, and neutrons are 

the main causes of soft errors. These particles cause electric disturbances in the silicon and 

thus might change the state of transistors affected by them. The radioactive impurities present 

in the packaging material or the silicon are the major sources of these radiations. In spite of 

improved manufacturing techniques, these impurities cannot be removed 1003, so they still 

cause problem. The three major causes are described as follows [1]: 

Alpha particles: Upon impact on the chip, they strike out the electrons from the silicon or 

other p-type or n-type impurity atoms. 

Cosmic rays: The Sun being their primary source, they react with earth's atmosphere to 

produce many particles having high energy. These rays produce strong electrical distur-

bances at their point of impact on the chip. 

High-energy neutron particles: They are primarily created by reaction of the cosmic rays 

with the atmosphere. These partials strike the molecular structure of the chip and 
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produce high-energy alpha particles. 

'Transistor size is continuously shrinking and so is the voltage difference between voltage 

levels of logic "O" and "l" [2], but the flux of the above mentioned radiations remains un-

changed. As a result these particles can inject errors on chip. The intensity of the radiations 

might be different at different points on the chip. An influx of these rays on the chip surface 

that in the past didn't affect the state of a chip would now cause the same effects that was 

formerly caused by the higher intensity radiation. High intensity radiation would now cause 

many more errors in the chip. 

Soft errors do not necessarily translate into system failures, making it hard to measure 

their frequency of occurrence. The location and timing of an error determine the final effect. 

A given soft error may be inconsequential or may propagate for a certain time without affecting 

a computation. Since memories have always been more susceptible to errors than processor 

pipelines, earlier research has focused on estimating the soft error rate in the context of memory 

technology [3, 4, 5]. Error-correcting codes (ECCs) have been used to ensure memory reliability 

[4]. ECCs and memory scrubbing techniques can drastically reduce the probability of system 

failure. Currently, a given single-bit in a RAM is expected to flip only once in many billion 

hours of operation[25]. However, this error frequency will increase in the future because of the 

shrinking trends in the size of transistors. 

The bit error rate of the processor is expected to increase even higher than in a memory chip 

due to higher complexity of the processor. At current operating speed, a processor experiences 

a bit-flip every 10 hours. Although not all soft errors result in a failure, the fact that even 

a single-bit error may cause fatal damage generates a need for error detection and recovery 

techniques for the system. 

1.1.3 Predictability 

Real time systems like flight control and health care, are hard real-time or mission critical 

systems. Failure to meet the deadlines of the tasks in these systems might result in loss of 

life and/or property. These systems require that the execution of the task must be fault free 
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[6], because any fault in the system during the execution of the task might lead to loss of life 

and/ or property. To avoid this scenario these systems should be provided with timely response 

[6]. A hard, real time system that is not fault tolerant or doesn't provide timely execution of 

the tasks may lead to loss of life and/ or property. While being fault tolerant, such systems 

should also provide a minimum performance (in terms of execution time) that is acceptable 

for the overall working of the application. Since the performance degradation in fault tolerant 

system is inevitable, the execution time of the task on a given processor should be predictable. 

This allows a real time scheduling algorithms [7, 8] to be able to schedule the task on the 

processor with better accuracy. 

1.2 Proposed Solution 

The number of the soft errors occurring during computation is much more than the per-

manent faults[ll]. Whenever an error is detected during a program execution, it has to be 

restarted. This solution may very expensive in certain cases, as there is a large performance 

penalties associated with any re-execution. The penalties might be even worse for mission-

critical real time systems where the delay of service might translate into loss of life and/or 

money. If a very long program is being executed on a computer system that takes many 

months to execute, then a single fault might waste the entire computation that was done over 

a long time. Checkpointing can be used to decrease the loss incurred due to soft errors. The 

processor achieves fault tolerance by periodically verifying execution state of the processor and 

upon finding it fault free, the state of the execution is saved in safe storage (presumably fault 

free). A program may restart from the saved state upon finding a fault. The process of saving 

the state is called checkpointing and the saved state is referred to as checkpoint. The process 

of restarting the process state to an earlier state is called rollback-recovery. 

However, the process of checkpointing is not without any cost. The processor has to stop 

its execution while the state of the processor is being verified. If there are many checkpoints, 

then the amount of time the processor is doing useful work decreases. On the other hand, if the 

number of checkpoints is too small, then the amount of computation wasted, in case of fault, will 
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be large. The time taken by the processor during checkpointing cannot be determined exactly 

before the execution. So if the number of checkpoints is very large, then the predictability of 

the execution time of the program decreases, making the processor not suitable for real time 

applications. Thus the number of checkpoints during a program execution should be balanced. 

The purpose of our research is to develop and evaluate a new cache checkpointing archi-

tecture called Checkpointing Buddy Cache architecture (CBCA). This is a step towards the 

balanced checkpointing with predictability and reliability requirements. We add a small fully-

associative cache, called Checkpointing Buddy Cache to work in parallel with the data-cache. 

The checkpointing buddy cache assists the processor in balancing the number of checkpoints. 

The main memory is assumed to be a stable storage device for the processor's state. There-

fore, the write operation must not be arbitrarily performed on the memory. Every time there is 

a requirement to replace a dirty line in conventional cache checkpointing architecture, a check-

point has to be established. Checkpointing buddy cache architecture decreases the number of 

checkpoint by copying the replaced dirty line to a fully associative buffer called checkpointing 

buddy cache(CBC), instead of writing it to the memory. A checkpoint is only established when 

CBC is completely filled with dirty lines. The result shows that our scheme reduces the num-

ber of checkpoints by 10% to 80% for different benchmarks as compared to conventional cache 

checkpointing architecture. When the number of checkpoints is large, the predictability of the 

execution time of the tasks greatly decreases. Our scheme reduces the number of checkpoints, 

and therefore the execution time of the tasks executing on the processor with CBCA can be 

predicted with better accuracy. 

1.3 Thesis Organization 

The rest of the thesis is organized as follows. In Chapter 2, we present some previous 

work on cache checkpointing architecture. In Chapter 3 we develop and discuss checkpointing 

buddy cache architecture. Chapter 4 is devoted for the discussion of the basic operation of 

checkpointing buddy cache based superscalar architecture. In Chapter 5 we present the results 

of our simulation and in Chapter 6 concludes the thesis. 
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CHAPTER 2. Cache for Fault Tolerance 

A variety of checkpointing schemes have been proposed in the literature. These schemes 

can be broadly classified into the following two categories on the basis of their assumed stable 

storage for checkpoint information. 

1. Memory Checkpointing 

2. Cache Checkpointing 

Memory checkpointing schemes assume the hard disk to be a stable storage for checkpoint 

information. The execution state is assumed to be in the memory hierarchy (main memory, 

cache and registers) above the hard disk. On every checkpointing event the execution state is 

stored on the hard disk. In these schemes, the emphasis is on managing the state variables 

in the main memory, cache and registers, so that they are efficiently moved to and recovered 

from the stable storage (hard disk system) with minimum overhead. 

Cache based checkpointing schemes assume that the main memory can be used as a stable 

storage for checkpoint information. Memory hierarchy (cache and registers) above the main 

memory is assumed to be the part of execution state. On every checkpointing event this 

information is saved in the main memory. In these schemes, the emphasis is on managing state 

variables in the cache and registers, so that they are efficiently moved to and recovered from 

the stable storage (main memory) with minimum overhead. 

2.1 Recovery Cache 

The use of cache for recovering from an error condition was first proposed by Lee et al. 

[21]. They used cache to automate a small portion of software rollback block scheme. The 
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scheme that they proposed is invisible to the programmer. However the hardware (only cache), 

operating system and compiler have to be modified to incorporate it. They call the cache used 

in their system as recovery cache. The main purpose of the recovery cache is to record the 

recovery data so that error recovery can be provided for the variables of a program containing 

recovery blocks. Whenever the processor writes to memory variables, their old values as well as 

their addresses are stored. Subsequently, if the application detects a bug in the computation, 

then these stored variables are restored and another algorithm is applied to the information. 

The cache checkpointing schemes can be further classified into two main categories on the 

basis of the underlying architecture. 

1. Uniprocessor cache checkpointing 

2. Share memory processor cache checkpointing 

2.2 Uniprocessor Cache Checkpointing 

CPU 

CACHE 

MEMORY 

Figure 2.1 General block diagram of a Uni-processor 
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2.2.1 CARER 

In [15], Hunt and Marions presented cache-aided rollback recovery (CARER) scheme and 

proposed a cache unit to assist checkpointing process. Their technique is invisible to the 

operating system, complier and programmer. In their work, each cache block is associated 

with one of the four status: invalid, clean, dirty and unchangeable. They keep checkpoint 

state in the main memory and use write-back algorithm for write operation. Checkpointing 

is primarily initiated when a dirty block has to be written back to the main memory. To 

keep the processor from staying idle at every checkpoint, the dirty lines, instead of flushing to 

main memory, are marked unchangeable. These unchangeable lines are flushed to the memory 

as the computation progresses after the checkpointing. Rollback to the correct system state 

is achieved by invalidating all the dirty lines and restoring the register file. This scheme is 

discussed in detail in Section 3.2. 

2.2.2 Comparison-Based Cache-Aided Rollback Error Recovery 

In [16], Lin presents another cache checkpoint architecture. He proposed to divide the 

cache into two parts and duplicate the resulting architecture. In each processor one part of 

the cache performs normal cache operations, while other cache stores the old checkpoint state 

that has to be flushed to the main memory. Like CARER [15], the checkpointing is primarily 

initiated when a dirty block has to be written back to the main memory. On every checkpoint 

the dirty lines in active caches of the two processors are compared. On a successful comparison 

the active cache becomes inactive cache and the inactive cache becomes active cache and the 

computation continues. The system uses the same memory bus to flush the dirty blocks from 

the inactive cache and read the data lines to the active cache. However, if there is a need 

for another checkpoint before the completion of the flush of inactive cache, then the normal 

checkpointing operations will have to wait until all the dirty lines from the inactive cache are 

flushed. Rollback to the correct system state is achieved by invalidating all the dirty lines in 

the active cache and restoring the register file. 
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2.2.3 Write-through cache scheme 

Unlike CARER [15] and Lin [16], Rana E. Ahmed [22] has proposed to use write-through 

algorithm for write operation. First outcome of this assumption is that a checkpoint primarily 

has to be established every time a store operation is performed. On every checkpoint the word 

being stored is validated and register file is copied to the backup register file. Whenever an 

error is detected, the rollback is achieved by coping the backup register file to the active or 

working register file. Rana's cache checkpointing scheme [22] decreases the time required for 

checkpointing and the time required for the recovery. However, writing through the memory 

hierarchy every time a store is executed heavily affects system's performance. 

2.3 Shared memory, cache checkpointing 

In this section we investigate some work done on shared memory processors cache check-

pointing. Shared memory processors (Figure 2.2) consists of multiple processors connected to 

each other through the shared memory by either a shared bus or an interconnection network. 

Each processor has its own private cache. Unlike a uniprocessor, shared memory processor can 

simultaneously execute many processes of the same program. Inter-process communication is 

achieved by accessing shared variables. In such a system, a processor can directly read from 

a modified line of another processor's cache. Several scheme using this paradigm have been 

proposed as discussed below. 

2.3.1 Recovery Stack based cache checkpointing 

The cache checkpointing scheme proposed by Wu et. al. [26], is based upon the CARER 

scheme for a uniprocessor. There are two main instances for which a process has to establish 

a checkpoint. The first is similar to uniprocessor checkpointing, i.e. whenever a dirty line is 

being replaced back to the shared memory. The second instance occurs when another processor 

tries to read a dirty line from a processor's cache. 

To avoid serial marking {unchangeable) of the cache on every checkpoint, Wu et. al., use 

"checkpoint identifiers". These are k-bit memory elements present with every cache line. A 
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CPU CPU CPU •••••• 
CACHE CACHE CACHE 

I I I 
Shared Bus or Interconnection Network 

I I I 
MEMORY MEMORY •••••• MEMORY 

Figure 2.2 General block diagram of shared memory processor 

k-bit counter is present in the cache controller that is incremented on every checkpoint and its 

current value is written to checkpoint identifier on every write access to the block. A cache 

line is considered as unwriteable if its checkpoint identifier is less then the counter. 

To reduce the memory bandwidth while computation is taking place the replaced unwrite-

able line are put on to the "recovery stack," however, they have to be written back to the main 

memory before the subsequent checkpoint. 

When an error is detected, all cache blocks except the unwriteable blocks are invalidated. 

The entries in the recovery stack are written back to the cache. The processor's registers are 

reloaded and the computation is restarted. The scheme is pretty much programmer trans-

parent, except that the programmer has to properly synchronize the shared variables. The 

computation might be wrong if an error occurs while executing software with poor synchro-

nization. 

2.3.2 Shared Memory CARER 

In [23], Ahmed et. al. did some modification to the CARER technique to make it workable 

for shared memory systems. They assume a shared memory bus as a connection network 
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between the processors and the shared memory. They introduce three control lines to the base 

bus architecture. 

1. Shared Line 

2. Establish Rollback Point Line 

3. Rollback Line 

A checkpoint primarily is initiated whenever there is a need for replacing a dirty line on any 

processor. A checkpoint is also initiated when a processor accesses a modified variable present 

in the cache of some other processor. If a processor submits a read request for a modified 

line present in some other processor then only the supplying processor has to be checkpointed. 

Then, when a write request for a modified line is submitted, to avoid checkpoint propagation, 

both the serving as well as the requesting processors has to be checkpointed. 

The establishment of checkpoint is similar to [15], i.e. all the dirty lines are validated and 

marked as unchangeable. Once an error is detected in a particular processor, then only that 

processor is rolled back, i.e., all the dirty lines in its cache are invalidated and its backup 

register file is copied to the active register file. 

2.4 Cache checkpointing system in practice 

Sequoia [27] is one of many practical fault tolerant systems. It consists of fault tolerant 

shared memory multiprocessor system and a fault tolerant operating system. Each of its 

processing nodes consists of duplex processors that are clock synchronized. Each processor has 

its own cache that is connected to the shared memory by a common bus. Many fault-tolerating 

techniques are used in sequoia to make it fault tolerant. Some of them are as follows: 

• SEC/DEC code for covering data storage and transfer paths. 

• Comparison of duplicated operations: multiprocessors, address generation logic, and 

cache management functions. 
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• Protocol monitors: for inter-element communication. 

• Other software fault tolerant techniques. 

Sequoia also employs cache checkpointing, i.e. it uses main memory as a safe storage 

for the checkpoint data. However, cache protocols implemented in sequoia are different then 

cache protocols for the share memory processors discussed in last section. Like other shared 

memory processors, the inter-processor communication takes place by accessing the shared 

variable, however these variables cannot be accessed directly from other's processor's cache. A 

processor can request the use of these shared variables. If no other processor is accessing these 

variables then these variables are fetched to the cache of that processor. After the processor 

completes the access to the shared variable, it releases it (writes it back to the memory). 

However, data from the cache cannot be written to the memory without validating it, 

therefore a checkpoint has to be established. In Sequoia, a checkpoint is established whenever 

a dirty line or a shared variable is to be written to the main memory. The cache checkpointing 

scheme employed in Sequoia is more robust than other techniques discussed above. This is 

because it uses two memories to save its checkpoint (Figure 2.3). Thus the state can be 

recovered even if error occurs while saving the checkpoint. 

While establishing a checkpoint, the duplex processor flushes its dirty lines and they are 

compared and saved in a backup memory. After that these lines are again flushed to the main 

memory. If the lines that are being flushed to the main memory don't compare to the lines 

present in the backup memory, then the entire procedure is repeated. 

If the dirty lines from the two caches of the duplex processor don't match, then rollback 

process is initiated. To rollback the duplex processor, the dirty lines in the caches are in-

validated and register file is loaded with the checkpointed register file data (which is present 

in the memory). After that the processor start processing again. Thought Sequoia provides 

practical implementation of cache checkpointing, the system does not provide for minimizing 

the overhead in checkpointing. 



www.manaraa.com

I -
Shared 

13 

Processing Element 

CPU CPU 
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Mirr ored 
Pages MEMORY 

Figure 2.3 Processing element of Sequoia and it's partially duplex memory 
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CHAPTER 3. Towards Balanced Cache Checkpointing 

The goal of checkpointing is to return the state of the system to the last correct execution 

in case of occurrence of a fault. Thus, the amount of computation wasted is minimized. 

Checkpointing involves validating and saving the execution state of the system at well-defined 

intervals. A program reloads the saved state when an error is detected. While developing 

a checkpointing scheme the main assumption is that the soft error rate is much higher than 

the permanent error rate (11]. If there were permanent faults in the system, then reexecution 

would not help the program to reach a fault free state. 

3.1 Basic Considerations and Definitions 

In order to facilitate further discussion on cache checkpointing we first describe the tech-

niques that are common in all the cache checkpointing schemes. 

Execution State 

In cache checkpointing schemes, the register file as well as the entire memory hierarchy 

is the part of the execution state. The register file constitutes the GPU state variables, and 

the modified memory locations make memory state variables. To conserve memory bandwidth 

some checkpointing schemes propose to save only the modified portions of the execution state. 

Such schemes are called incremental checkpointing schemes. 

Stable storage 

One of the fundamental assumptions in any checkpointing scheme is that the storage struc-

ture (i.e., main memory or both cache and main memory or hard disk) used to store the 
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checkpoint is either protected by its own error detection and recovery mechanism or it is inher-

ently much more reliable than the system that is to be covered by the checkpointing scheme. 

In the cache checkpointing schemes the memory state variables are stored in the main 

memory, and the CPU state variables (the operating register file) are stored in a separate backup 

register file, which is present along with operating register file on the CPU [15, 16, 22]. These 

storage devices are protected by error correcting codes, and/ or memory scrubbing techniques, 

so the probability of their failure is very small [3, 4, 5]. Other cache checkpointing schemes like 

Sequoia doesn't use a backup register file, and the main memory is used to store the contents 

of the register file. 

Cache-write policy 

While saving the execution state at the time of checkpointing, it is preferred to save only 

the modified information. Incremental checkpointing reduces the time required for establishing 

a checkpoint. To adapt to the incremental checkpointing, the memory area must be classified 

into modified memory and non-modified memory areas. In case of cache checkpointing, the 

memory data in the cache is classified as dirty (modified) or clean (non-modified). A write 

policy must be given (assumed) to govern the writing to cache. 

The cache-write policy that is used in most of the cache checkpointing schemes is write-back 

cache [9] with least recently used (LRU)[14] replacement policy (if the cache is set-associative). 

The line that is selected by LRU policy for replacement is the least recently used among a 

set of cache lines. Write-through policy requires checkpoint to be established on every store 

operation. However, for write-back caches a checkpoint is established when a dirty line is 

replaced back to the main memory. 

Causes for checkpointing 

After a checkpoint is established the cache and the main memory are identical, and the 

execution continues. A checkpoint is initiated under the following three circumstances. 

1. When there is a need for replacement of a dirty cache line 
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2. When an external interrupt occurs 

3. When an I/O instruction is executed 

When an external interrupt occurs the normal flow of instruction execution is altered. A 

checkpoint must be established as soon as the interrupt is recognized, otherwise, if an error 

occurs during the interrupt service routine the computation is rolled back to a point in the 

main program before the interrupt occurred. The program does not re-enter the interrupt 

service routine since the external event that caused the interrupt might not re-occur. Another 

way of looking at this is to say that the computation gets rolled back, but the external world 

cannot be rolled back (15]. 

To establish a checkpoint the following step must be done. 

• Verify the execution state (i.e. original register file and dirty cache lines) of the system 

• Save the execution state to the safe storage. 

Rollback and Recovery 

When an error is detected, then all of the cache-lines are marked as invalid, and the backup 

register file is copied to the operational register file (15, 16, 22]. In this way the processor state 

is reset to the previously known fault free state. The processor then continues to execute from 

that point onwards. 

3.2 Cache-aided rollback error recovery (CARER) 

In [15], Douglas et. al. showed that the processor stall time at the point of checkpoint 

can be decreased if instead of copying all dirty lines to main memory the dirty cache lines 

are marked unchangeable. These lines are written back to the main memory as the execution 

continues. Writing an unchangeable line back to main memory does not affect the memory 

state, because the data in the line marked unchangeable is part of the verified state. They 

assumed that the cache memory is protected against errors just as the main memory and the 

register files. 
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3.2.1 Tasks performed 

The processor system based on CARER technique performs the following main tasks. 

1. Normal operation. 

2. Checkpointing . 

3. Rollback/Recovery . 

3.2.1.1 Normal Operation 

During the normal operation (i.e. when the processor is not performing a checkpoint 

or rollback) the processor operates in normal state, and executes the program. All memory 

references are served by cache, as in a conventional processor. However, for every write request 

to an unchangeable line, the line is first written back to the main memory (after which it is 

clean), and then it is written into. The "normal operation" continuous until there is a need to 

establish a checkpoint. 

A checkpoint is established if an I/O operation is performed or an interrupt is recognized. 

Checkpoint is also established whenever the cache memory needs to write a dirty line back to 

the main memory. Checkpointing is necessary at that point because writing of a dirty line will 

change (or corrupt if faulty) the system state saved in memory. 

Start 
Processing 

Write Write Write Write 
Take Unchangeable Take Unchangeable Take Unchangeable Take Unchangeable Take 
CP lines to the CP lines to the CP lines to the CP lines to the CP 

Memory Memory Memory Memory 

Figure 3.1 Timeline for the execution of a program in CARER based pro-
cessor. 

3.2.1.2 Checkpointing operation 

When the execution reaches a checkpoint the control unit generates a checkpoint interrupt 

to the processor to halt the program execution. The content of backup registers and the dirty 

cache lines are verified. The CPU state (the original register file) is copied to backup register 
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file and all dirty lines in the cache are marked as unchangeable. Execution then resumes but 

from that point on the entries in the cache that are marked unchangeable is written back to 

main memory as the execution continues. 

When there is a need to establish another checkpoint the entire cache is scanned for lines 

marked as unchangeable that are still present in the cache. These lines are written back to 

main memory. The processor then follows the normal checkpointing process. 

The time taken to complete a checkpoint is a function of the number of unchangeable lines 

that are still present in the cache at the time of next checkpoint. This number cannot be 

predicted before the execution of the program with high accuracy. Therefore, the time taken 

to complete a checkpoint cannot be determined with high certainty before the execution of 

the task. Thus the predictability of the execution time of the task running on a checkpointing 

processor is low. 

3.2.1.3 Rollback/Recovery Operation 

Rollback/Recovery operation is initiated, whenever an error is detected during the process 

of verification of execution state of the processor (i.e. the original register file and the dirty 

cache lines). All of the dirty lines in the cache are invalidated, the contents of backup register 

file are copied to original register file, and temporary buffers in the processor are flushed 

[15]. The processor thus rolls-backs the program execution to the previous correct state. The 

program execution restarts from this point, and the system returns to the normal operation. 

3.2.2 Behavior of Cache 

The cache unit of a processor based upon the CARER technique uses a write back cache. 

The replacement policy for the cache is LRU policy [10]. The load/store operation is similar 

to that of a conventional cache. When the processor executes a load/store operation it sends 

data request to memory system. If there is a hit in the cache the data request is served by the 

cache. 

A hit on read operation proceeds uninterrupted. If there is a hit in the data-cache for 
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a write request, and the requested data is in a clean or dirty lines, then the memory system 

proceeds as in the conventional system. However, if the data is to be written to a unchangeable 

line, then the line has to be written back to main memory, and then the data is written to the 

line. 

If there is a cache-miss for the data request by the processor, then a cache line is replaced. 

The line to be replaced is selected using the LRU algorithm. Based on the status of line (that 

is being replaced), different operations are performed. 

• If the line to be replaced is clean/invalid, then it can be simply replaced. 

• If the line to be replaced is unchangeable, then it is first copied to the main memory, and 

then replaced. 

• If the line to be replaced is dirty, then a checkpoint has to be established. 

Let Htime be the access time for the cache unit, Mn be the miss rate for the cache, and 

Mp be the time penalty for every cache-miss, then the average cache access time is expressed 

as: 

tavg = Htime +Mn* Mp 

3.3 CBCA based processor 

Figure 3.2 shows the block diagram of a processing system based on Checkpointing Buddy 

Cache Architecture (CBCA). The data requests from the processor are served by the data-

cache, which operates in parallel with a small fully associative cache called as Checkpointing 

Buddy Cache (CBC). Both caches together serve the memory requests, but the data request 

is served by one of the caches. The CBC works in parallel with the data-cache. Therefore, 

the access-time for the entire cache system does increase (this hypothesis is evaluated in Sec-

tion 5.3). 
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Figure 3.2 Logical connection between the data-cache and the checkpoint-
ing buddy cache. 

3.3.1 Operation of CBCA-based processor 

The operation of a processor using CBCA is similar to that of CARER-based scheme 

except for an extra operation (CBC transfer) performed by CBCA based microprocessor. The 

following different operations are performed by CBCA based microprocessor. 

1. Normal operation 

2. CBC transfer 

3. Checkpointing 

4. Rollback/Recovery 
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3.3.1.1 Normal operation 

Normal operation proceeds as in Section 3.2.1.1, except for the cache access. Whenever the 

memory operation is executed, the memory request is simultaneously sent to the data-cache 

as well as to the CBC. The processor continues the normal operation until an I/O operation 

is to be performed, or an interrupt is recognized, or a replacement of a dirty line is needed. 

3.3.1.2 CBC transfer 

During the execution of program, if there is a need to replace a dirty line from the data-

cache, then instead of writing it back to main memory, and establishing a checkpoint the line 

is written to the CBC. As the CBC is fully associative cache, therefore, the dirty line from 

data-cache can be written into any available line in the CBC. The memory system then brings 

data from the main memory, and writes it in the data-cache in the replaced dirty line. The 

processor then continues with normal operation. When the CBC is completely filled (by the 

dirty lines), and there is a need to replace another dirty line from the data-cache, a checkpoint 

has to be established. 

Start 
Processing 

CBC CBC 
Transfer Transfer 

CBC 
Full 

Write Unchangeable Write Unchangeable Write Unchangeable 

CBC 
Full 

Take Lines to the Memory CBC Lines to the Memory CBC Lines to the Memory Take 
CP Transfer Transfer CP 

Figure 3.3 Timeline for the execution of a program in CBCA based pro-
cessor. 

3.3.1.3 Checkpointing operation 

The process of checkpointing for CBCA based processor is similar to that discussed in 

Section 3.2.1.2, except the unchangeable lines (if any) in both data-cache as well as the CBC 

(there might be some unchangeable lines in the CBC at in case of interrupt checkpointing) are 

copied to the main memory. Next, the CPU state and the contents of all dirty line of both 

data-cache and CBC are verified. After the verification the CPU state (the original register 

file) is copied to backup register file, and all dirty lines in the data-cache as well as in CBC 
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are marked as unchangeable. These lines are written back to the main memory one at a time 

as when they are replaced in the normal operation. However, all unchangeable lines have to 

be written back before the next checkpoint is taken. 

After the process of checkpointing is complete the memory system will have a saved correct 

processor state. The processor continues with normal operation. A decrease in the number of 

checkpoints increases the time between two successive checkpoints, causing greater number of 

unchangeable lines to get flushed to main memory before the next checkpoint. Therefore, the 

time that the processor stalls at the checkpoint deceases. The number of the unchangeable 

lines flushed at the checkpoint cannot be determined before execution. Therefore, the execution 

time still cannot be exactly predicted. However, our scheme decreases the average number of 

unchangeable cache lines present at the time of checkpoint, thus decreasing the average time to 

establish the checkpoint. Also, there is a reduction in the number of checkpoints. Therefore, 

overall our scheme reduces the execution times as compared to other cache checkpointing 

schemes. 

3.3.1.4 Rollback/Recovery Operation 

After copying the unchangeable lines (at the time of checkpointing) from the data-cache 

and the CBC a validation process is initiated. If an error is found during the validation process, 

then Rollback/Recovery operation is initiated. During the rollback/recovery operation all of 

the dirty lines in the data-cache as well as the dirty lines of the CBC are invalidated, and the 

contents of backup register file are copied to original register file and temporary buffers in the 

processor are flushed. The processor thus rolls-back the program execution to the previous 

correct state. The program execution restarts from this point, and the system returns to the 

normal operation. 

3.3.2 Behaviour of the cache unit 

The cache unit of a processor based upon the CBCA technique is a write back cache. If 

there is a cache-miss for the data request by the processor, then a cache line from the data-cache 
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is selected according to LRU policy (if the data-cache is multi-way set associative). Based on 

the status of the line (that is being replaced), different operations are performed. 

• If the line to be replaced is clean/invalid, then it can be simply replaced. 

• If the line to be replaced is unchangeable, then it is first copied to the main memory, and 

then replaced. 

• If the line to be replaced is dirty, then it is first copied to the CBC and then replaced. 

The dirty line from the data-cache replaces a line in the CBC. At the checkpoint all the 

dirty lines in CBC are marked unchangeable, and copied into main memory as need arises. 

A CBC line needs to be written back into the main memory only to make room for replace-

ment of a dirty line. The line to be replaced is selected by least recently used unchangeable 

(LRUU) algorithm. If the status of the line is clear, invalid or unchangeable then the operation 

performed it similar to that of data-cache. If the LRUU algorithm selects a dirty line to be 

replaced (i.e. the CBC is filled with dirty lines) then a checkpoint is established. Dirty lines 

in CBC are not replaced, as they are part of the current checkpoint state. 

The hit time for the cache system (H[CBCA]time) is same as the hit time for data-cache 

as long as the hit time for the CBC remains less than or equal to that of the data-cache. Let 

H[data]nate and H[CBC]nate be the hit rate for the data-cache and the CBC, respectively. 

Then 

M[data]nate = 1 - H[data]Rate 

M[CBC]nate = 1 - H[CBC]nate 

where M[data]nate is miss rate for the data-cache and M[CBC]nate is the miss rate for the 

CBC. Then the miss rate for the entire cache system is given by: 

M[CBCA]nate = H[data]nate * M[CBC]nate + H[CBC]nate * M[data]nate 

If the time penalty for a cache miss is determined by M[CBCA]p, then average access time 

for CBCA is expressed as: 

tavg = H[CBCA]time + M[CBCA]nate * M[CBCA]p 
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CHAPTER 4. Cache Checkpointing for Superscalar Processor 

In this chapter, the attributes of modern superscalar processors and a description of how 

the proposed cache checkpointing scheme can used to cover them against faults is described. 

4.1 Superscalar Processor 

Modern processors have multiple functional units to execute multiple instructions. These 

processors fetch and issue multiple instructions every clock cycle that don't have dependencies 

on each other. To further improve the throughput of the processor the instructions that have 

their dependencies resolved are allowed to execute before the instructions that don't have their 

dependencies resolved yet. This is called out-of-order execution [17]. However, executing the 

instructions out-of-order makes the exception handling imprecise. The exceptions are handled 

precisely by adding an extra stage to the pipeline. This stage is called the commit stage [18]. 

When an instruction is dispatched, a reservation is made for it in a circular queue called reorder 

buffer (ROB). The instructions at the top of the ROB whose execution has been completed 

are committed to the processor state. If the instruction is an ALU operation, then the result 

of instruction is committed to the register file, and a store instruction is committed to the 

memory hierarchy. 

4.2 Checkpointing 

Figure 4.1 show different pipeline stages the instruction has to pass through for complete 

execution. The process of checkpointing for superscalar processors is similar to the one de-

scribed in Chapter 3, except that the read and write requests by the superscalar processor 

are sent to cache system in different pipeline stages. The load request is sent to the memory 
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hierarchy in Execute/Memory stage, whereas the store request has to wait till the instruction 

is in Commit stage. 

Dispatch Scheduler Execute/Memory Writeback 

Load Checkpointing 

Figure 4.1 Pipelined Superscalar Processor 

4.2.1 Exception/Interrupt 

Commit 
Store/Interrupt 
Checkpointing 

Whenever an exception occurs or an interrupt is recognized the processor pipeline stops 

further instruction fetching and dispatching. The ROB entry of the instruction that caused the 

exception is marked. When the marked entry reaches top of the ROB the exception handling 

procedure is invoked, thus making the exception handling precise. In our scheme, checkpoint 

is established (Section 3.3) when such an instruction reaches the top of the ROB (Figure 4.1). 

After the checkpointing processes is completed, the processor invokes the Exception/Interrupt 

handling routines. The checkpointings triggered by exception/interrupt are collectively called 

interrupt checkpointings. 

4.2.2 Store Operation 

Access to memory hierarchy is initiated by load/store instructions. This access might 

initiate a checkpoint (i.e., there is no room in the CBC for more dirty lines). In superscalar 

processor the actual store request is carried out when the instruction is about to commit 

(Figure 4.1). If there is a need to establish a checkpoint, the cache proceeds with the process 

of checkpointing, and the CPU is not stopped. However, if there is a need to process another 

load or store request, then the processor is stopped. If the load/store instructions following 

the "checkpointing store" are far from the store instruction that caused checkpointing, the 

ROB quickly fills up, and there would be no space for new instructions, and future dispatching 

of the instruction is stopped until the completion of the checkpointing process. This would 

eventually stop further fetching, and thus stopping the entire processor. 
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4.2.3 Load Operation 

The actual load operation in a load instruction is performed in the execute/memory stage 

of a superscalar pipeline (Figure 4.1). If a load instruction initiates the establishment of check-

point, the ROB entry reserved by that load is not released until the completion of checkpointing 

process. The instructions following the "checkpointing load" (load instruction that triggered 

checkpointing process) might be dependent upon its result, and hence will be stalled. Eventu-

ally the entire ROB fills up, and the processor stalls until the competition of the checkpointing 

operation. 

Both load and store checkpoints are initiated because of the replacement of dirty lines. 

Therefore, these checkpoints are called replacement checkpoints. 

When there is a need to establish a checkpoint, for any of the above-mentioned reasons, 

the following operations are carried out by the processor. 

1. Flush all the unchangeable lines in data-cache or CBC (if any), to the main memory. 

2. Validate entries in the original register file and all the dirty cache lines. 

3. Mark all the dirty lines to unchangeable. 

4.3 Recovering form a fault situation 

Whenever a fault is detected, during the verification stage of a checkpoint, the following 

steps are taken to return the processor to the fault free state. 

1. All the unchangeable cache lines either in data-cache or CBC (here the cache and memory 

are assumed to be reliable), if any, are written back to the memory. 

2. The entire ROB is flushed. 

3. All the cache lines in data-cache and CBC are marked invalid. 

4. The backup register file is copied to original register file. 
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At this point, the processing state is rolled back to the last fault free state. All memory 

locations, as seen by the processor, are the same as they were when the last checkpoint was 

established. 
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CHAPTER 5. Evaluation and Results 

5.1 Simulation 

Previous works on checkpointing cache architecture only use program traces of memory 

accesses [12, 13, 15]. Their results don't take into account the effect of checkpointing on the 

instruction execution. In our research, we have used simplescalar tool set 3.0 [19] that simu-

lates out of order superscalar processor, using spec95 and spec2000 [20] binaries as the input 

program to the simplescalar "processor." Therefore, the results generated by our experiments 

are representative of the overall affect of checkpointing on the performance due to various 

parameters of the processor. 

The original simplescalar simulator assumes a totally fault free environment, and doesn't 

simulate any fault detection or correction mechanism. Changes were made to the base simulator 

to incorporate checkpointing mechanisms in it. To achieve this, cache.c, cache.h and sim-

outorder.c were modified, and the modified simulator is called sim-check. 

Three types of processors, based on simplescalar tool set, are used for experiments. The 

first processor assumes a fault-free environment. Therefore, this simulator (named sim-fault-

free) has no fault tolerant features built into it. The second processor uses CARER cache 

architecture, and perform checkpointing as described in the Section 3.2 to cover the faults. 

The sim-check simulator has been modified to develop sim-CARER . The procedure of check-

pointing is changed so that the dirty cache lines would only be marked unchangeable, instead of 

flushing on every checkpoint. The third processor uses CBCA cache architecture (Section 3.3) 

to reduce the number of checkpoints. This simulator is developed based on the sim-CARER. 

Modifying the cache files so that the simulator copies the replaced the dirty lines to the CBC, 

instead of taking a checkpoint on every replacement. This simulator is called sim-CBCA. 
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Table 5.I shows the simulator parameters that are common to all the architectures (i.e. 

sim-fault-free, sim-CARER, and sim-CBCA). 

Table 5.I Input parameters to the simplescalar simulator 

Parameter Value 
Instruction Fetch Queue Size 4 
Decode width 4 
Issue width 4 
Commit width 4 
RUU size I6 
LSQ size 8 
DI-Cache Sets I28 
DI-Cache line size 32 Bytes 
DI-Cache Associatively 4-way 
DI-Latency I 
II-Cache Sets 5I2 
II-Cache line size 32 
II-Cache Associatively I-way 
II-Latency I 
D2-Cache None 
I2-Cache None 

SPEC95 and SPEC2000 programs were used. PISA little-end binaries obtained from [I9]. 

Simulations are run on a Linux workstation. Each benchmark on the simulator is run for 200 

million instructions [24) with parameters shown in Table 5.1. 

5.2 Results and Discussions 

Checkpointing comparison 

Figures 5.I, 5.2, and 5.3 show the variation in the number of checkpoints for various 

CBC sizes while executing various benchmarks. For each benchmark the number of check-

points obtained has been normalized with the number of checkpoints obtained for CARER 

architecture. The figures show that the number of checkpoints required for programs exe-

cuting on a processor based on checkpointing buddy cache architecture is less than number of 
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Checkpointings Comparison El CARER 
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Figure 5.1 Comparison of number of Checkpoints between different cache 
architectures using spec95 Integer benchmarks 
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Figure 5.2 Comparison of number of Checkpoints between different cache 
architectures using spec95 floating point benchmarks 

checkpoints required for the programs executing on a processor based on CARER. There is 

a clear decrease in number of checkpoints as the CBC size is increased from 0 (CARER) to 

32. This decrease is linear in most of the benchmarks. For some floating-point benchmarks 

like fpppp, tomcatv, turb3d and wave5, the decrease is considerable, but saturates with the 

higher CBC size. The benchmark Hydro2d requires a smaller number of interrupt checkpoints, 

and much smaller number of replacement checkpoints. Therefore, there is no decrease in the 

number of checkpoints as the size of CBC is increased beyond one. The benchmark m88ksim 

has very large number of interrupt checkpoints whereas its replacement checkpoints are very 

small. Therefore, there is almost no decrease in its number of checkpoints, with the increase 

in the CBC size. 
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Figure 5.3 Comparison of number of Checkpoints between different cache 
architectures using spec2000 benchmarks 

Research herein shows that the number of checkpoints needed for programs running on the 

CBCA based processor is less than the number of checkpoints needed for programs running on 

CARER. In Section 3.2.1.2, it was discussed that the predictability of execution time decreases 

with the increase in the number of checkpoints because of the unpredictable stall time of 

the checkpoint. The average stall time in case of CBCA based processor is less than the 

conventional cache checkpointing processor. Therefore, the execution time for the programs 

running on CBCA based processor is more predictable than on CARER based processor. 

There is an overall trend of decrease in the number of checkpoints with the increase in the 

CBC size. However, actual decrease depends upon the number of replacement checkpoints in 

non-CBC architecture. This finding follows Amdahl's law, i.e., if the number of replacement 

checkpoints is more than the number of interrupt checkpoints, the overall decrease in the 

number of checkpoints is significant. 



www.manaraa.com

32 

Miss rate comparison 

Figure 5.4 Comparison of cache miss rate between different cache architec-
tures using spec95 Integer benchmarks 
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Figure 5.5 Comparison of cache miss rate between different cache architec-
tures using spec95 floating point benchmarks 
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Figures 5.4, 5.5, and 5.6 show the variation in the cache miss rate for various CBC sizes 

and sim-fault-free while executing various benchmarks. For each benchmark the cache miss rate 

for different architectures has been normalized with the miss rate obtained for sim-fault-free. 

The cache miss rate for sim-CBCA is less than the cache miss rate for sim-fault-free and 

sim-CARER. The miss rate decreases with the increase in the size the CBC size. The trend 

is different for different applications. For example, in the benchmarks like li, m88ksim, perl, 

applu, hydro2d, mgrid, swim and turb3d, the decrease is not very significant. However, the 

decrease in the miss rate is significant for other benchmarks. The dirty cache line that is to 
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Figure 5.6 Comparison of cache miss rate between different cache architec-
tures using spec2000 benchmarks 

be replaced from the data-cache is placed in the CBC and when the processor accesses that 

line again, its request is serviced by the CBC and no cache miss is generated. However, the 

decrease in miSs rate depends on the actual use of data in the replaced lines. The decrease in 

the miss rate for the various benchmarks also helps in overall improvement in the performance 

of the processors. 
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Execution cycle comparison 
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Figure 5. 7 Comparison of number of Checkpoints between different cache 
architectures using spec95 Integer benchmarks 
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Figure 5.8 Comparison of number of Checkpoints between different cache 
architectures using spec95 floating point benchmarks 

Redundancy is used to improve the reliability of a system. The redundancy can be in 

the form of extra hardware or extra execution time. In either case the performance of the 

system decreases as compared to the base system. Subsequently, checkpointing being a time 

redundancy technique is expected to affect the performance of the system. The following 

paragraphs discuss the impact the CBCA has on the performance of the system as compared 

to the classical cache checkpointing architecture. 

Figures 5.7, 5.8 , and 5.9 illustrate the impact of cache checkpointing on the performance 
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Figure 5.9 Comparison of number of Checkpoints between different cache 
architectures using spec2000 benchmarks 

of the system. It can be seen the CARER degrades the performance for most benchmarks. 

However, the impact of CBC can be seen to be less degrading as compared to the CARER 

scheme. Further, this degradation in the system performance is reduced with the increase in 

the CBC size. For each benchmark the execution cycles obtained for different architectures 

has been normalized with the execution cycles obtained sim-fault-free. 

With the exception of m88ksim and hydro2d that do not have significant number of re-

placement checkpoints, other benchmarks show improvement in the number of execution cycles 

over CARER scheme, depending on the number of decrease in the checkpointing and miss rate. 

In the previous paragraphs, it has been shown that the number of checkpoints as well as miss 

rate improves as the CBC size increases. The improvement of the execution cycles depends 

on, according to Amdahl's law, the actual fraction of time these two factors represent. The 

graphs show performance improvement for most the benchmarks. They show that the number 

of execution cycles for checkpointing buddy cache architecture become similar to non-fault 

tolerant processor with increase in the CBC size. 
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5.3 CBCA access time 

In section 3.3, we discussed that data-cache is working in parallel with a small fully associa-

tive cache. Therefore, the overall access time for the entire cache system would not increase. 

To verify this hypothesis, Cacti 2.0 was modified to include CBC working in parallel with 

data-cache. Modified simulator takes, data-cache as well as CBC parameters as input. The 

program calculates overall access-time for the cache system, and individual access-times for 

data-cache and CBC. 

Table 5.2 Input parameters to modified Cacti simulator 

Parameter Value 
Technology 0.18 micron 
Number of read/write ports 2 
Data-cache size 16KB 
Data-cache line size 32B 
Data-cache Associativity 4 
CBC line size 32B 
CBC size 32B, 64B, 128B, 256B, 

512B 1024B 
CBC Associativity DM, 2, 4, 8 

16, 32 

Table 5.2 shows different parameters used for calculating access-time for different check-

pointing buddy cache architectures. 

Figure 5.10 shows the comparison between the access-times of the data-cache and CBC 

of different sizes. Access time for CBC increases as the size of CBC is increased. For the 

CBC size of up to 16 lines the access-time of the CBC is less than data-cache. Therefore, the 

access-time of overall cache unit (CBCA) is equal to access time of data-cache. However, the 

access-time for the CBC of size 32 lines is 43% greater than the access time for the data-cache, 

making the access-time for CBCA equal to access-time for CBC-32. Therefore, increase in the 

CBC size should be limited to 16 lines. 
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CHAPTER 6. Conclusion 

In this thesis a new cache checkpointing scheme was developed. It was observed that 

writing modified cache lines, that are needed to be replaced to the main memory, to a fully 

associative cache buffer (CBC) would decrease the number of checkpoints by 103 to 803 

as compared to existing cache checkpointing schemes. Checkpoint is only established once 

the CBC is filled with dirty lines. The processor accesses the data-cache as well as CBC 

concurrently. Therefore, no miss is generated whenever the processor requests for the data 

from a line that is present either in the data-cache or in the CBC. The mechanism decreases 

the cache miss rate for various benchmarks executing on the CBCA-based processor up to 

263 as compared to the base architecture. Whenever an error is detected, the processor can 

rollback to fault free state by copying the contents of backup register file to the original register 

file, and invalidating all the dirty lines in data-cache as well as in CBC. It was also found 

that the performance degradation for the CBCA-based processor is less than the performance 

degradation for classical checkpointing architecture. The performance of the overall system 

improved with the increase in the CBC size. 

It was also observed that the number of lines in the CBC couldn't be arbitrarily increased. 

It was found that the access time for the fully-associative CBC of size 32 lines is larger than the 

access time of data-cache by 433, which might lead to increase in the cycle time of the system. 

The access time for CBC of size up to 16 is less than the access time for data-cache. Therefore, 

the overall cycle time of the processing system is not affected. When fault tolerant schemes are 

applied to a system, the performance of the system decreases. Checkpointing, being a time-

redundant scheme, greatly affects the performance of the system. It was found that the CBCA 

based processor provides better performance as compared to classical cache checkpointing 
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scheme. The performance is similar to the base architecture for most of the benchmarks. 

The CBCA based processor takes less number of cycles to execute some benchmarks like perl, 

wave5, mcfOO and mesaOO than the base processor. 

Checkpointing buddy cache architecture is a step toward balanced checkpointing because it 

eliminates unnecessary checkpoints while maintaining the ones that are necessary to minimize 

the computational loss in case of faults. The decrease in the number of checkpoints causes 

the inter-checkpoints interval to increase, thus causing more unchangeable lines to be written 

back to main memory before the establishment of the next checkpoint. This phenomenon 

decreases the average time to establish a checkpoint. Because of the unpredictable nature 

of the checkpoint the conventional cache checkpointing architectures are not suitable for real 

time applications, as they require the establishment of a lot of checkpoints. However, check-

pointing buddy cache architecture based processors with their balanced checkpoints, are more 

suitable for reliable, real time applications as compared to conventional cache checkpointing 

architectures. 
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