
www.manaraa.com

Retrospective Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

1-1-2002

CBCA: balance cache checkpointing for superscalar processors CBCA: balance cache checkpointing for superscalar processors

Adeel Israr
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/rtd

Recommended Citation Recommended Citation
Israr, Adeel, "CBCA: balance cache checkpointing for superscalar processors" (2002). Retrospective
Theses and Dissertations. 20106.
https://lib.dr.iastate.edu/rtd/20106

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and
Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses
and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information,
please contact digirep@iastate.edu.

http://lib.dr.iastate.edu/
http://lib.dr.iastate.edu/
https://lib.dr.iastate.edu/rtd
https://lib.dr.iastate.edu/theses
https://lib.dr.iastate.edu/theses
https://lib.dr.iastate.edu/rtd?utm_source=lib.dr.iastate.edu%2Frtd%2F20106&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/rtd/20106?utm_source=lib.dr.iastate.edu%2Frtd%2F20106&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

CBCA: Balance Cache Checkpointing for Superscalar processors

by

Adeel Israr

A thesis submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Engineering

Program of Study Committee:
Arun K. Somani, Major Professor

Akhilesh Tyagi
Thomas J. Rudolphi

Iowa State University

Ames, Iowa

2002

Copyright © Adeel Israr, 2002. All rights reserved.

www.manaraa.com

11

Graduate College
Iowa State University

This is to certify that the master's thesis of

Adeel Israr

has met the thesis requirements of Iowa State University

Signatures have been redacted for privacy

www.manaraa.com

111

DEDICATION

To my kind and loving parents.

www.manaraa.com

lV

TABLE OF CONTENTS

List of Tables .

List of Figures

ABSTRACT.

CHAPTER 1. Introduction

1.1 Background

1.1.1 Processor Speed

1.1.2 Dependability .

1.1.3 Predictability

1.2 Proposed Solution .

1.3 Thesis Organization

CHAPTER 2. Cache for Fault Tolerance

2.1 Recovery Cache

2.2 Uniprocessor Cache Checkpointing

2.2.1 CARER

2.2.2 Comparison-Based Cache-Aided Rollback Error Recovery

2.2.3 Write-through cache scheme .

2.3 Shared memory, cache checkpointing

2.3. l Recovery Stack based cache checkpointing .

2.3.2 Shared Memory CARER

2.4 Cache checkpointing system in practice

CHAPTER 3. Towards Balanced Cache Checkpointing

3.1 Basic Considerations and Definitions

Vl

Vll

lX

1

1

1

2

3

4

5

6

6

7

8

8

9

9

9

10

11

14

14

www.manaraa.com

v

3.2 Cache-aided rollback error recovery (CARER) .

3.2.1 Tasks performed .

3.2.2 Behavior of Cache

3.3 CBCA based processor . .

3.3.1 Operation of CBCA-based processor

3.3.2 Behaviour of the cache unit

16

17

18

19

20

22

CHAPTER 4. Cache Check.pointing for Superscalar Processor 24

4.1 Superscalar Processor 24

4.2 Checkpointing 24

4.2.1 Exception/Interrupt 25

4.2.2 Store Operation

4.2.3 Load Operation .

4.3 Recovering form a fault situation

CHAPTER 5. Evaluation and Results

5.1 Simulation

5.2 Results and Discussions

5.3 CBCA access time . . .

CHAPTER 6. Conclusion

ACKNOWLEDGEMENTS

25

26

26

28

28

29

36

38

43

www.manaraa.com

Table 5.1

Table 5.2

Vl

LIST OF TABLES

Input parameters to the simplescalar simulator

Input parameters to modified Cacti simulator .

29

36

www.manaraa.com

Figure 2.1

Figure 2.2

Figure 2.3

Figure 3.1

Figure 3.2

Figure 3.3

Figure 4.1

Figure 5.1

Figure 5.2

Figure 5.3

Figure 5.4

Figure 5.5

Figure 5.6

vu

LIST OF FIGURES

General block diagram of a Uni-processor 7

General block diagram of shared memory processor 10

Processing element of Sequoia and it's partially duplex memory 13

Timeline for the execution of a program in CARER based processor. . 17

Logical connection between the data-cache and the checkpointing buddy

cache. 20

Timeline for the execution of a program in CBCA based processor. 21

Pipelined Superscalar Processor . 25

Comparison of number of Checkpoints between different cache archi-

tectures using spec95 Integer benchmarks 30

Comparison of number of Checkpoints between different cache archi-

tectures using spec95 floating point benchmarks 30

Comparison of number of Checkpoints between different cache archi-

tectures using spec2000 benchmarks . 31

Comparison of cache miss rate between different cache architectures

using spec95 Integer benchmarks . 32

Comparison of cache miss rate between different cache architectures

using spec95 floating point benchmarks 32

Comparison of cache miss rate between different cache architectures

using spec2000 benchmarks . 33

www.manaraa.com

Vlll

Figure 5. 7 Comparison of number of Checkpoints between different cache archi-

tectures using spec95 Integer benchmarks 34

Figure 5.8 Comparison of number of Checkpoints between different cache archi-

tectures using spec95 floating point benchmarks 34

Figure 5.9 Comparison of number of Checkpoints between different cache archi-

tectures using spec2000 benchmarks . 35

Figure 5.10 Comparison among access time of data-cache and CBC of different sizes 37

www.manaraa.com

IX

ABSTRACT

The reliability of future general-purpose processors (G PPs) is threatened by a combination

of factors like shrinking transistor size, higher clock rates, and reduced supply voltages. It is

predicted that the occurrence of soft errors will dramatically increase as these trends continue.

It is necessary that the processors be covered from the effects of transient faults with predictable

minimal impact on performance. Such a predictable impact would allow the processor to be

employed in real-time applications. In this thesis, we propose a superscalar architecture based

on checkpointing buddy cache architecture. This architecture keeps the execution of tasks free

from soft errors by detecting the fault in the execution state and resetting the state of the

processor to last known fault free state.

Our scheme minimizes the overhead of checkpointing by eliminating the unnecessary check-

points. We added checkpointing buddy cache (CBC), a small fully associative cache, that works

in parallel with the data cache. Whenever there is a need for replacing a dirty line from the

data cache, then instead of writing it to main memory and taking a checkpoint, it is written to

CBC. The checkpoint is taken when the CBC is filled with dirty lines. The results show that

the number of checkpoints required for the checkpointing buddy cache architecture (CBCA) is

103 to 803 less than the conventional cache checkpointing architecture. The cache miss rate

for our scheme is also reduced up to 263 as compared to base processor. The number of check-

points and miss rate were found to decrease with the increase in the size of CBC. However,

the access time for CBC of size 32 lines was found to be greater than the data cache, thus

making CBC of size greater than 32 impractical. CBCA provides fault tolerant mechanism to

protect the processor against soft errors, while providing task execution time similar to base

processor.

www.manaraa.com

1

CHAPTER 1. Introduction

1.1 Background

Throughout history, the human beings have made tools and devices that assist them to

survive and to improve their performance. The computer is one of their latest inventions.

The computers have found their use in a large varity of systems that assist humans. Their

applications range from small toys to space stations. As humans are becoming more and

more dependent on computer-based systems, increasing attention is being paid not only to

the processors' computing speed, but also to their dependability as well as predictability of

execution times.

1.1.1 Processor Speed

Architectural and technological innovations have enabled the development of powerful mi-

croprocessors that can execute several instructions concurrently at a very high clock-rate.

With the availability of ample on-chip hardware resources, researchers are proposing aggres-

sive micro-architectures that can execute large number of instructions every clock-cycle. Both

density and cycle time of memory is improving every year, thus improving the overall speed of

the system. This development is keeping pace with Moore's law, which states that computation

speed and memory capacity double every 18 months. Technological advancements in general

purpose processor (GPPs) and onchip memories have significantly increased the speed and

density of these components. This tremendous improvement in the performance of computer

is mainly due to decrease in feature size. This progress in computer performance is made while

maintaining, or even increasing, the reliability of the individual components.

www.manaraa.com

2

1.1.2 Dependability

Dependability is the quality of service provided by a particular system. Reliability, avail-

ability, safety, maintainability, performablity, and testability are examples of measures used

to quantify the dependability of a system. Among these, reliability and availability are most

frequently used dependability measures. Reliability is the probability of continuous operation

over an interval of time, where as availability is the probability of the system being operational

at any given instant.

Unstable environmental conditions can generate temporary hardware failures in computers,

even if they are shipped with no design errors or manufacturing defects. These failures are

termed as transient faults or soft errors. According to Siewiorek and Robert[ll], transient

faults are much more frequent, than any other kind of faults. An error is simply defined as an

inappropriate change in the value of a signal (i.e. from high to low, or from low to high).

1.1.2.1 Sources of Soft error

In [1], it is shown that particles such as alpha and gamma, cosmic rays, and neutrons are

the main causes of soft errors. These particles cause electric disturbances in the silicon and

thus might change the state of transistors affected by them. The radioactive impurities present

in the packaging material or the silicon are the major sources of these radiations. In spite of

improved manufacturing techniques, these impurities cannot be removed 1003, so they still

cause problem. The three major causes are described as follows [1]:

Alpha particles: Upon impact on the chip, they strike out the electrons from the silicon or

other p-type or n-type impurity atoms.

Cosmic rays: The Sun being their primary source, they react with earth's atmosphere to

produce many particles having high energy. These rays produce strong electrical distur-

bances at their point of impact on the chip.

High-energy neutron particles: They are primarily created by reaction of the cosmic rays

with the atmosphere. These partials strike the molecular structure of the chip and

www.manaraa.com

3

produce high-energy alpha particles.

'Transistor size is continuously shrinking and so is the voltage difference between voltage

levels of logic "O" and "l" [2], but the flux of the above mentioned radiations remains un-

changed. As a result these particles can inject errors on chip. The intensity of the radiations

might be different at different points on the chip. An influx of these rays on the chip surface

that in the past didn't affect the state of a chip would now cause the same effects that was

formerly caused by the higher intensity radiation. High intensity radiation would now cause

many more errors in the chip.

Soft errors do not necessarily translate into system failures, making it hard to measure

their frequency of occurrence. The location and timing of an error determine the final effect.

A given soft error may be inconsequential or may propagate for a certain time without affecting

a computation. Since memories have always been more susceptible to errors than processor

pipelines, earlier research has focused on estimating the soft error rate in the context of memory

technology [3, 4, 5]. Error-correcting codes (ECCs) have been used to ensure memory reliability

[4]. ECCs and memory scrubbing techniques can drastically reduce the probability of system

failure. Currently, a given single-bit in a RAM is expected to flip only once in many billion

hours of operation[25]. However, this error frequency will increase in the future because of the

shrinking trends in the size of transistors.

The bit error rate of the processor is expected to increase even higher than in a memory chip

due to higher complexity of the processor. At current operating speed, a processor experiences

a bit-flip every 10 hours. Although not all soft errors result in a failure, the fact that even

a single-bit error may cause fatal damage generates a need for error detection and recovery

techniques for the system.

1.1.3 Predictability

Real time systems like flight control and health care, are hard real-time or mission critical

systems. Failure to meet the deadlines of the tasks in these systems might result in loss of

life and/or property. These systems require that the execution of the task must be fault free

www.manaraa.com

4

[6], because any fault in the system during the execution of the task might lead to loss of life

and/ or property. To avoid this scenario these systems should be provided with timely response

[6]. A hard, real time system that is not fault tolerant or doesn't provide timely execution of

the tasks may lead to loss of life and/ or property. While being fault tolerant, such systems

should also provide a minimum performance (in terms of execution time) that is acceptable

for the overall working of the application. Since the performance degradation in fault tolerant

system is inevitable, the execution time of the task on a given processor should be predictable.

This allows a real time scheduling algorithms [7, 8] to be able to schedule the task on the

processor with better accuracy.

1.2 Proposed Solution

The number of the soft errors occurring during computation is much more than the per-

manent faults[ll]. Whenever an error is detected during a program execution, it has to be

restarted. This solution may very expensive in certain cases, as there is a large performance

penalties associated with any re-execution. The penalties might be even worse for mission-

critical real time systems where the delay of service might translate into loss of life and/or

money. If a very long program is being executed on a computer system that takes many

months to execute, then a single fault might waste the entire computation that was done over

a long time. Checkpointing can be used to decrease the loss incurred due to soft errors. The

processor achieves fault tolerance by periodically verifying execution state of the processor and

upon finding it fault free, the state of the execution is saved in safe storage (presumably fault

free). A program may restart from the saved state upon finding a fault. The process of saving

the state is called checkpointing and the saved state is referred to as checkpoint. The process

of restarting the process state to an earlier state is called rollback-recovery.

However, the process of checkpointing is not without any cost. The processor has to stop

its execution while the state of the processor is being verified. If there are many checkpoints,

then the amount of time the processor is doing useful work decreases. On the other hand, if the

number of checkpoints is too small, then the amount of computation wasted, in case of fault, will

www.manaraa.com

5

be large. The time taken by the processor during checkpointing cannot be determined exactly

before the execution. So if the number of checkpoints is very large, then the predictability of

the execution time of the program decreases, making the processor not suitable for real time

applications. Thus the number of checkpoints during a program execution should be balanced.

The purpose of our research is to develop and evaluate a new cache checkpointing archi-

tecture called Checkpointing Buddy Cache architecture (CBCA). This is a step towards the

balanced checkpointing with predictability and reliability requirements. We add a small fully-

associative cache, called Checkpointing Buddy Cache to work in parallel with the data-cache.

The checkpointing buddy cache assists the processor in balancing the number of checkpoints.

The main memory is assumed to be a stable storage device for the processor's state. There-

fore, the write operation must not be arbitrarily performed on the memory. Every time there is

a requirement to replace a dirty line in conventional cache checkpointing architecture, a check-

point has to be established. Checkpointing buddy cache architecture decreases the number of

checkpoint by copying the replaced dirty line to a fully associative buffer called checkpointing

buddy cache(CBC), instead of writing it to the memory. A checkpoint is only established when

CBC is completely filled with dirty lines. The result shows that our scheme reduces the num-

ber of checkpoints by 10% to 80% for different benchmarks as compared to conventional cache

checkpointing architecture. When the number of checkpoints is large, the predictability of the

execution time of the tasks greatly decreases. Our scheme reduces the number of checkpoints,

and therefore the execution time of the tasks executing on the processor with CBCA can be

predicted with better accuracy.

1.3 Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2, we present some previous

work on cache checkpointing architecture. In Chapter 3 we develop and discuss checkpointing

buddy cache architecture. Chapter 4 is devoted for the discussion of the basic operation of

checkpointing buddy cache based superscalar architecture. In Chapter 5 we present the results

of our simulation and in Chapter 6 concludes the thesis.

www.manaraa.com

6

CHAPTER 2. Cache for Fault Tolerance

A variety of checkpointing schemes have been proposed in the literature. These schemes

can be broadly classified into the following two categories on the basis of their assumed stable

storage for checkpoint information.

1. Memory Checkpointing

2. Cache Checkpointing

Memory checkpointing schemes assume the hard disk to be a stable storage for checkpoint

information. The execution state is assumed to be in the memory hierarchy (main memory,

cache and registers) above the hard disk. On every checkpointing event the execution state is

stored on the hard disk. In these schemes, the emphasis is on managing the state variables

in the main memory, cache and registers, so that they are efficiently moved to and recovered

from the stable storage (hard disk system) with minimum overhead.

Cache based checkpointing schemes assume that the main memory can be used as a stable

storage for checkpoint information. Memory hierarchy (cache and registers) above the main

memory is assumed to be the part of execution state. On every checkpointing event this

information is saved in the main memory. In these schemes, the emphasis is on managing state

variables in the cache and registers, so that they are efficiently moved to and recovered from

the stable storage (main memory) with minimum overhead.

2.1 Recovery Cache

The use of cache for recovering from an error condition was first proposed by Lee et al.

[21]. They used cache to automate a small portion of software rollback block scheme. The

www.manaraa.com

7

scheme that they proposed is invisible to the programmer. However the hardware (only cache),

operating system and compiler have to be modified to incorporate it. They call the cache used

in their system as recovery cache. The main purpose of the recovery cache is to record the

recovery data so that error recovery can be provided for the variables of a program containing

recovery blocks. Whenever the processor writes to memory variables, their old values as well as

their addresses are stored. Subsequently, if the application detects a bug in the computation,

then these stored variables are restored and another algorithm is applied to the information.

The cache checkpointing schemes can be further classified into two main categories on the

basis of the underlying architecture.

1. Uniprocessor cache checkpointing

2. Share memory processor cache checkpointing

2.2 Uniprocessor Cache Checkpointing

CPU

CACHE

MEMORY

Figure 2.1 General block diagram of a Uni-processor

www.manaraa.com

8

2.2.1 CARER

In [15], Hunt and Marions presented cache-aided rollback recovery (CARER) scheme and

proposed a cache unit to assist checkpointing process. Their technique is invisible to the

operating system, complier and programmer. In their work, each cache block is associated

with one of the four status: invalid, clean, dirty and unchangeable. They keep checkpoint

state in the main memory and use write-back algorithm for write operation. Checkpointing

is primarily initiated when a dirty block has to be written back to the main memory. To

keep the processor from staying idle at every checkpoint, the dirty lines, instead of flushing to

main memory, are marked unchangeable. These unchangeable lines are flushed to the memory

as the computation progresses after the checkpointing. Rollback to the correct system state

is achieved by invalidating all the dirty lines and restoring the register file. This scheme is

discussed in detail in Section 3.2.

2.2.2 Comparison-Based Cache-Aided Rollback Error Recovery

In [16], Lin presents another cache checkpoint architecture. He proposed to divide the

cache into two parts and duplicate the resulting architecture. In each processor one part of

the cache performs normal cache operations, while other cache stores the old checkpoint state

that has to be flushed to the main memory. Like CARER [15], the checkpointing is primarily

initiated when a dirty block has to be written back to the main memory. On every checkpoint

the dirty lines in active caches of the two processors are compared. On a successful comparison

the active cache becomes inactive cache and the inactive cache becomes active cache and the

computation continues. The system uses the same memory bus to flush the dirty blocks from

the inactive cache and read the data lines to the active cache. However, if there is a need

for another checkpoint before the completion of the flush of inactive cache, then the normal

checkpointing operations will have to wait until all the dirty lines from the inactive cache are

flushed. Rollback to the correct system state is achieved by invalidating all the dirty lines in

the active cache and restoring the register file.

www.manaraa.com

9

2.2.3 Write-through cache scheme

Unlike CARER [15] and Lin [16], Rana E. Ahmed [22] has proposed to use write-through

algorithm for write operation. First outcome of this assumption is that a checkpoint primarily

has to be established every time a store operation is performed. On every checkpoint the word

being stored is validated and register file is copied to the backup register file. Whenever an

error is detected, the rollback is achieved by coping the backup register file to the active or

working register file. Rana's cache checkpointing scheme [22] decreases the time required for

checkpointing and the time required for the recovery. However, writing through the memory

hierarchy every time a store is executed heavily affects system's performance.

2.3 Shared memory, cache checkpointing

In this section we investigate some work done on shared memory processors cache check-

pointing. Shared memory processors (Figure 2.2) consists of multiple processors connected to

each other through the shared memory by either a shared bus or an interconnection network.

Each processor has its own private cache. Unlike a uniprocessor, shared memory processor can

simultaneously execute many processes of the same program. Inter-process communication is

achieved by accessing shared variables. In such a system, a processor can directly read from

a modified line of another processor's cache. Several scheme using this paradigm have been

proposed as discussed below.

2.3.1 Recovery Stack based cache checkpointing

The cache checkpointing scheme proposed by Wu et. al. [26], is based upon the CARER

scheme for a uniprocessor. There are two main instances for which a process has to establish

a checkpoint. The first is similar to uniprocessor checkpointing, i.e. whenever a dirty line is

being replaced back to the shared memory. The second instance occurs when another processor

tries to read a dirty line from a processor's cache.

To avoid serial marking {unchangeable) of the cache on every checkpoint, Wu et. al., use

"checkpoint identifiers". These are k-bit memory elements present with every cache line. A

www.manaraa.com

10

CPU CPU CPU ••••••
CACHE CACHE CACHE

I I I
Shared Bus or Interconnection Network

I I I
MEMORY MEMORY •••••• MEMORY

Figure 2.2 General block diagram of shared memory processor

k-bit counter is present in the cache controller that is incremented on every checkpoint and its

current value is written to checkpoint identifier on every write access to the block. A cache

line is considered as unwriteable if its checkpoint identifier is less then the counter.

To reduce the memory bandwidth while computation is taking place the replaced unwrite-

able line are put on to the "recovery stack," however, they have to be written back to the main

memory before the subsequent checkpoint.

When an error is detected, all cache blocks except the unwriteable blocks are invalidated.

The entries in the recovery stack are written back to the cache. The processor's registers are

reloaded and the computation is restarted. The scheme is pretty much programmer trans-

parent, except that the programmer has to properly synchronize the shared variables. The

computation might be wrong if an error occurs while executing software with poor synchro-

nization.

2.3.2 Shared Memory CARER

In [23], Ahmed et. al. did some modification to the CARER technique to make it workable

for shared memory systems. They assume a shared memory bus as a connection network

www.manaraa.com

11

between the processors and the shared memory. They introduce three control lines to the base

bus architecture.

1. Shared Line

2. Establish Rollback Point Line

3. Rollback Line

A checkpoint primarily is initiated whenever there is a need for replacing a dirty line on any

processor. A checkpoint is also initiated when a processor accesses a modified variable present

in the cache of some other processor. If a processor submits a read request for a modified

line present in some other processor then only the supplying processor has to be checkpointed.

Then, when a write request for a modified line is submitted, to avoid checkpoint propagation,

both the serving as well as the requesting processors has to be checkpointed.

The establishment of checkpoint is similar to [15], i.e. all the dirty lines are validated and

marked as unchangeable. Once an error is detected in a particular processor, then only that

processor is rolled back, i.e., all the dirty lines in its cache are invalidated and its backup

register file is copied to the active register file.

2.4 Cache checkpointing system in practice

Sequoia [27] is one of many practical fault tolerant systems. It consists of fault tolerant

shared memory multiprocessor system and a fault tolerant operating system. Each of its

processing nodes consists of duplex processors that are clock synchronized. Each processor has

its own cache that is connected to the shared memory by a common bus. Many fault-tolerating

techniques are used in sequoia to make it fault tolerant. Some of them are as follows:

• SEC/DEC code for covering data storage and transfer paths.

• Comparison of duplicated operations: multiprocessors, address generation logic, and

cache management functions.

www.manaraa.com

12

• Protocol monitors: for inter-element communication.

• Other software fault tolerant techniques.

Sequoia also employs cache checkpointing, i.e. it uses main memory as a safe storage

for the checkpoint data. However, cache protocols implemented in sequoia are different then

cache protocols for the share memory processors discussed in last section. Like other shared

memory processors, the inter-processor communication takes place by accessing the shared

variable, however these variables cannot be accessed directly from other's processor's cache. A

processor can request the use of these shared variables. If no other processor is accessing these

variables then these variables are fetched to the cache of that processor. After the processor

completes the access to the shared variable, it releases it (writes it back to the memory).

However, data from the cache cannot be written to the memory without validating it,

therefore a checkpoint has to be established. In Sequoia, a checkpoint is established whenever

a dirty line or a shared variable is to be written to the main memory. The cache checkpointing

scheme employed in Sequoia is more robust than other techniques discussed above. This is

because it uses two memories to save its checkpoint (Figure 2.3). Thus the state can be

recovered even if error occurs while saving the checkpoint.

While establishing a checkpoint, the duplex processor flushes its dirty lines and they are

compared and saved in a backup memory. After that these lines are again flushed to the main

memory. If the lines that are being flushed to the main memory don't compare to the lines

present in the backup memory, then the entire procedure is repeated.

If the dirty lines from the two caches of the duplex processor don't match, then rollback

process is initiated. To rollback the duplex processor, the dirty lines in the caches are in-

validated and register file is loaded with the checkpointed register file data (which is present

in the memory). After that the processor start processing again. Thought Sequoia provides

practical implementation of cache checkpointing, the system does not provide for minimizing

the overhead in checkpointing.

www.manaraa.com

I -
Shared

13

Processing Element

CPU CPU

CACHE CACHE

---------1-----------------t-------- - - -I I
Dirty

Mirr ored
Pages MEMORY

Figure 2.3 Processing element of Sequoia and it's partially duplex memory

www.manaraa.com

14

CHAPTER 3. Towards Balanced Cache Checkpointing

The goal of checkpointing is to return the state of the system to the last correct execution

in case of occurrence of a fault. Thus, the amount of computation wasted is minimized.

Checkpointing involves validating and saving the execution state of the system at well-defined

intervals. A program reloads the saved state when an error is detected. While developing

a checkpointing scheme the main assumption is that the soft error rate is much higher than

the permanent error rate (11]. If there were permanent faults in the system, then reexecution

would not help the program to reach a fault free state.

3.1 Basic Considerations and Definitions

In order to facilitate further discussion on cache checkpointing we first describe the tech-

niques that are common in all the cache checkpointing schemes.

Execution State

In cache checkpointing schemes, the register file as well as the entire memory hierarchy

is the part of the execution state. The register file constitutes the GPU state variables, and

the modified memory locations make memory state variables. To conserve memory bandwidth

some checkpointing schemes propose to save only the modified portions of the execution state.

Such schemes are called incremental checkpointing schemes.

Stable storage

One of the fundamental assumptions in any checkpointing scheme is that the storage struc-

ture (i.e., main memory or both cache and main memory or hard disk) used to store the

www.manaraa.com

15

checkpoint is either protected by its own error detection and recovery mechanism or it is inher-

ently much more reliable than the system that is to be covered by the checkpointing scheme.

In the cache checkpointing schemes the memory state variables are stored in the main

memory, and the CPU state variables (the operating register file) are stored in a separate backup

register file, which is present along with operating register file on the CPU [15, 16, 22]. These

storage devices are protected by error correcting codes, and/ or memory scrubbing techniques,

so the probability of their failure is very small [3, 4, 5]. Other cache checkpointing schemes like

Sequoia doesn't use a backup register file, and the main memory is used to store the contents

of the register file.

Cache-write policy

While saving the execution state at the time of checkpointing, it is preferred to save only

the modified information. Incremental checkpointing reduces the time required for establishing

a checkpoint. To adapt to the incremental checkpointing, the memory area must be classified

into modified memory and non-modified memory areas. In case of cache checkpointing, the

memory data in the cache is classified as dirty (modified) or clean (non-modified). A write

policy must be given (assumed) to govern the writing to cache.

The cache-write policy that is used in most of the cache checkpointing schemes is write-back

cache [9] with least recently used (LRU)[14] replacement policy (if the cache is set-associative).

The line that is selected by LRU policy for replacement is the least recently used among a

set of cache lines. Write-through policy requires checkpoint to be established on every store

operation. However, for write-back caches a checkpoint is established when a dirty line is

replaced back to the main memory.

Causes for checkpointing

After a checkpoint is established the cache and the main memory are identical, and the

execution continues. A checkpoint is initiated under the following three circumstances.

1. When there is a need for replacement of a dirty cache line

www.manaraa.com

16

2. When an external interrupt occurs

3. When an I/O instruction is executed

When an external interrupt occurs the normal flow of instruction execution is altered. A

checkpoint must be established as soon as the interrupt is recognized, otherwise, if an error

occurs during the interrupt service routine the computation is rolled back to a point in the

main program before the interrupt occurred. The program does not re-enter the interrupt

service routine since the external event that caused the interrupt might not re-occur. Another

way of looking at this is to say that the computation gets rolled back, but the external world

cannot be rolled back (15].

To establish a checkpoint the following step must be done.

• Verify the execution state (i.e. original register file and dirty cache lines) of the system

• Save the execution state to the safe storage.

Rollback and Recovery

When an error is detected, then all of the cache-lines are marked as invalid, and the backup

register file is copied to the operational register file (15, 16, 22]. In this way the processor state

is reset to the previously known fault free state. The processor then continues to execute from

that point onwards.

3.2 Cache-aided rollback error recovery (CARER)

In [15], Douglas et. al. showed that the processor stall time at the point of checkpoint

can be decreased if instead of copying all dirty lines to main memory the dirty cache lines

are marked unchangeable. These lines are written back to the main memory as the execution

continues. Writing an unchangeable line back to main memory does not affect the memory

state, because the data in the line marked unchangeable is part of the verified state. They

assumed that the cache memory is protected against errors just as the main memory and the

register files.

www.manaraa.com

17

3.2.1 Tasks performed

The processor system based on CARER technique performs the following main tasks.

1. Normal operation.

2. Checkpointing .

3. Rollback/Recovery .

3.2.1.1 Normal Operation

During the normal operation (i.e. when the processor is not performing a checkpoint

or rollback) the processor operates in normal state, and executes the program. All memory

references are served by cache, as in a conventional processor. However, for every write request

to an unchangeable line, the line is first written back to the main memory (after which it is

clean), and then it is written into. The "normal operation" continuous until there is a need to

establish a checkpoint.

A checkpoint is established if an I/O operation is performed or an interrupt is recognized.

Checkpoint is also established whenever the cache memory needs to write a dirty line back to

the main memory. Checkpointing is necessary at that point because writing of a dirty line will

change (or corrupt if faulty) the system state saved in memory.

Start
Processing

Write Write Write Write
Take Unchangeable Take Unchangeable Take Unchangeable Take Unchangeable Take
CP lines to the CP lines to the CP lines to the CP lines to the CP

Memory Memory Memory Memory

Figure 3.1 Timeline for the execution of a program in CARER based pro-
cessor.

3.2.1.2 Checkpointing operation

When the execution reaches a checkpoint the control unit generates a checkpoint interrupt

to the processor to halt the program execution. The content of backup registers and the dirty

cache lines are verified. The CPU state (the original register file) is copied to backup register

www.manaraa.com

18

file and all dirty lines in the cache are marked as unchangeable. Execution then resumes but

from that point on the entries in the cache that are marked unchangeable is written back to

main memory as the execution continues.

When there is a need to establish another checkpoint the entire cache is scanned for lines

marked as unchangeable that are still present in the cache. These lines are written back to

main memory. The processor then follows the normal checkpointing process.

The time taken to complete a checkpoint is a function of the number of unchangeable lines

that are still present in the cache at the time of next checkpoint. This number cannot be

predicted before the execution of the program with high accuracy. Therefore, the time taken

to complete a checkpoint cannot be determined with high certainty before the execution of

the task. Thus the predictability of the execution time of the task running on a checkpointing

processor is low.

3.2.1.3 Rollback/Recovery Operation

Rollback/Recovery operation is initiated, whenever an error is detected during the process

of verification of execution state of the processor (i.e. the original register file and the dirty

cache lines). All of the dirty lines in the cache are invalidated, the contents of backup register

file are copied to original register file, and temporary buffers in the processor are flushed

[15]. The processor thus rolls-backs the program execution to the previous correct state. The

program execution restarts from this point, and the system returns to the normal operation.

3.2.2 Behavior of Cache

The cache unit of a processor based upon the CARER technique uses a write back cache.

The replacement policy for the cache is LRU policy [10]. The load/store operation is similar

to that of a conventional cache. When the processor executes a load/store operation it sends

data request to memory system. If there is a hit in the cache the data request is served by the

cache.

A hit on read operation proceeds uninterrupted. If there is a hit in the data-cache for

www.manaraa.com

19

a write request, and the requested data is in a clean or dirty lines, then the memory system

proceeds as in the conventional system. However, if the data is to be written to a unchangeable

line, then the line has to be written back to main memory, and then the data is written to the

line.

If there is a cache-miss for the data request by the processor, then a cache line is replaced.

The line to be replaced is selected using the LRU algorithm. Based on the status of line (that

is being replaced), different operations are performed.

• If the line to be replaced is clean/invalid, then it can be simply replaced.

• If the line to be replaced is unchangeable, then it is first copied to the main memory, and

then replaced.

• If the line to be replaced is dirty, then a checkpoint has to be established.

Let Htime be the access time for the cache unit, Mn be the miss rate for the cache, and

Mp be the time penalty for every cache-miss, then the average cache access time is expressed

as:

tavg = Htime +Mn* Mp

3.3 CBCA based processor

Figure 3.2 shows the block diagram of a processing system based on Checkpointing Buddy

Cache Architecture (CBCA). The data requests from the processor are served by the data-

cache, which operates in parallel with a small fully associative cache called as Checkpointing

Buddy Cache (CBC). Both caches together serve the memory requests, but the data request

is served by one of the caches. The CBC works in parallel with the data-cache. Therefore,

the access-time for the entire cache system does increase (this hypothesis is evaluated in Sec-

tion 5.3).

www.manaraa.com

20

....---------I Address

CPU
Data Data .-------+--I Out In

Data Cache
Checkpointing
Buddy Cache

Memory
Interface

.'.:: Memory
Interface

Figure 3.2 Logical connection between the data-cache and the checkpoint-
ing buddy cache.

3.3.1 Operation of CBCA-based processor

The operation of a processor using CBCA is similar to that of CARER-based scheme

except for an extra operation (CBC transfer) performed by CBCA based microprocessor. The

following different operations are performed by CBCA based microprocessor.

1. Normal operation

2. CBC transfer

3. Checkpointing

4. Rollback/Recovery

www.manaraa.com

21

3.3.1.1 Normal operation

Normal operation proceeds as in Section 3.2.1.1, except for the cache access. Whenever the

memory operation is executed, the memory request is simultaneously sent to the data-cache

as well as to the CBC. The processor continues the normal operation until an I/O operation

is to be performed, or an interrupt is recognized, or a replacement of a dirty line is needed.

3.3.1.2 CBC transfer

During the execution of program, if there is a need to replace a dirty line from the data-

cache, then instead of writing it back to main memory, and establishing a checkpoint the line

is written to the CBC. As the CBC is fully associative cache, therefore, the dirty line from

data-cache can be written into any available line in the CBC. The memory system then brings

data from the main memory, and writes it in the data-cache in the replaced dirty line. The

processor then continues with normal operation. When the CBC is completely filled (by the

dirty lines), and there is a need to replace another dirty line from the data-cache, a checkpoint

has to be established.

Start
Processing

CBC CBC
Transfer Transfer

CBC
Full

Write Unchangeable Write Unchangeable Write Unchangeable

CBC
Full

Take Lines to the Memory CBC Lines to the Memory CBC Lines to the Memory Take
CP Transfer Transfer CP

Figure 3.3 Timeline for the execution of a program in CBCA based pro-
cessor.

3.3.1.3 Checkpointing operation

The process of checkpointing for CBCA based processor is similar to that discussed in

Section 3.2.1.2, except the unchangeable lines (if any) in both data-cache as well as the CBC

(there might be some unchangeable lines in the CBC at in case of interrupt checkpointing) are

copied to the main memory. Next, the CPU state and the contents of all dirty line of both

data-cache and CBC are verified. After the verification the CPU state (the original register

file) is copied to backup register file, and all dirty lines in the data-cache as well as in CBC

www.manaraa.com

22

are marked as unchangeable. These lines are written back to the main memory one at a time

as when they are replaced in the normal operation. However, all unchangeable lines have to

be written back before the next checkpoint is taken.

After the process of checkpointing is complete the memory system will have a saved correct

processor state. The processor continues with normal operation. A decrease in the number of

checkpoints increases the time between two successive checkpoints, causing greater number of

unchangeable lines to get flushed to main memory before the next checkpoint. Therefore, the

time that the processor stalls at the checkpoint deceases. The number of the unchangeable

lines flushed at the checkpoint cannot be determined before execution. Therefore, the execution

time still cannot be exactly predicted. However, our scheme decreases the average number of

unchangeable cache lines present at the time of checkpoint, thus decreasing the average time to

establish the checkpoint. Also, there is a reduction in the number of checkpoints. Therefore,

overall our scheme reduces the execution times as compared to other cache checkpointing

schemes.

3.3.1.4 Rollback/Recovery Operation

After copying the unchangeable lines (at the time of checkpointing) from the data-cache

and the CBC a validation process is initiated. If an error is found during the validation process,

then Rollback/Recovery operation is initiated. During the rollback/recovery operation all of

the dirty lines in the data-cache as well as the dirty lines of the CBC are invalidated, and the

contents of backup register file are copied to original register file and temporary buffers in the

processor are flushed. The processor thus rolls-back the program execution to the previous

correct state. The program execution restarts from this point, and the system returns to the

normal operation.

3.3.2 Behaviour of the cache unit

The cache unit of a processor based upon the CBCA technique is a write back cache. If

there is a cache-miss for the data request by the processor, then a cache line from the data-cache

www.manaraa.com

23

is selected according to LRU policy (if the data-cache is multi-way set associative). Based on

the status of the line (that is being replaced), different operations are performed.

• If the line to be replaced is clean/invalid, then it can be simply replaced.

• If the line to be replaced is unchangeable, then it is first copied to the main memory, and

then replaced.

• If the line to be replaced is dirty, then it is first copied to the CBC and then replaced.

The dirty line from the data-cache replaces a line in the CBC. At the checkpoint all the

dirty lines in CBC are marked unchangeable, and copied into main memory as need arises.

A CBC line needs to be written back into the main memory only to make room for replace-

ment of a dirty line. The line to be replaced is selected by least recently used unchangeable

(LRUU) algorithm. If the status of the line is clear, invalid or unchangeable then the operation

performed it similar to that of data-cache. If the LRUU algorithm selects a dirty line to be

replaced (i.e. the CBC is filled with dirty lines) then a checkpoint is established. Dirty lines

in CBC are not replaced, as they are part of the current checkpoint state.

The hit time for the cache system (H[CBCA]time) is same as the hit time for data-cache

as long as the hit time for the CBC remains less than or equal to that of the data-cache. Let

H[data]nate and H[CBC]nate be the hit rate for the data-cache and the CBC, respectively.

Then

M[data]nate = 1 - H[data]Rate

M[CBC]nate = 1 - H[CBC]nate

where M[data]nate is miss rate for the data-cache and M[CBC]nate is the miss rate for the

CBC. Then the miss rate for the entire cache system is given by:

M[CBCA]nate = H[data]nate * M[CBC]nate + H[CBC]nate * M[data]nate

If the time penalty for a cache miss is determined by M[CBCA]p, then average access time

for CBCA is expressed as:

tavg = H[CBCA]time + M[CBCA]nate * M[CBCA]p

www.manaraa.com

24

CHAPTER 4. Cache Checkpointing for Superscalar Processor

In this chapter, the attributes of modern superscalar processors and a description of how

the proposed cache checkpointing scheme can used to cover them against faults is described.

4.1 Superscalar Processor

Modern processors have multiple functional units to execute multiple instructions. These

processors fetch and issue multiple instructions every clock cycle that don't have dependencies

on each other. To further improve the throughput of the processor the instructions that have

their dependencies resolved are allowed to execute before the instructions that don't have their

dependencies resolved yet. This is called out-of-order execution [17]. However, executing the

instructions out-of-order makes the exception handling imprecise. The exceptions are handled

precisely by adding an extra stage to the pipeline. This stage is called the commit stage [18].

When an instruction is dispatched, a reservation is made for it in a circular queue called reorder

buffer (ROB). The instructions at the top of the ROB whose execution has been completed

are committed to the processor state. If the instruction is an ALU operation, then the result

of instruction is committed to the register file, and a store instruction is committed to the

memory hierarchy.

4.2 Checkpointing

Figure 4.1 show different pipeline stages the instruction has to pass through for complete

execution. The process of checkpointing for superscalar processors is similar to the one de-

scribed in Chapter 3, except that the read and write requests by the superscalar processor

are sent to cache system in different pipeline stages. The load request is sent to the memory

www.manaraa.com

25

hierarchy in Execute/Memory stage, whereas the store request has to wait till the instruction

is in Commit stage.

Dispatch Scheduler Execute/Memory Writeback

Load Checkpointing

Figure 4.1 Pipelined Superscalar Processor

4.2.1 Exception/Interrupt

Commit
Store/Interrupt
Checkpointing

Whenever an exception occurs or an interrupt is recognized the processor pipeline stops

further instruction fetching and dispatching. The ROB entry of the instruction that caused the

exception is marked. When the marked entry reaches top of the ROB the exception handling

procedure is invoked, thus making the exception handling precise. In our scheme, checkpoint

is established (Section 3.3) when such an instruction reaches the top of the ROB (Figure 4.1).

After the checkpointing processes is completed, the processor invokes the Exception/Interrupt

handling routines. The checkpointings triggered by exception/interrupt are collectively called

interrupt checkpointings.

4.2.2 Store Operation

Access to memory hierarchy is initiated by load/store instructions. This access might

initiate a checkpoint (i.e., there is no room in the CBC for more dirty lines). In superscalar

processor the actual store request is carried out when the instruction is about to commit

(Figure 4.1). If there is a need to establish a checkpoint, the cache proceeds with the process

of checkpointing, and the CPU is not stopped. However, if there is a need to process another

load or store request, then the processor is stopped. If the load/store instructions following

the "checkpointing store" are far from the store instruction that caused checkpointing, the

ROB quickly fills up, and there would be no space for new instructions, and future dispatching

of the instruction is stopped until the completion of the checkpointing process. This would

eventually stop further fetching, and thus stopping the entire processor.

www.manaraa.com

26

4.2.3 Load Operation

The actual load operation in a load instruction is performed in the execute/memory stage

of a superscalar pipeline (Figure 4.1). If a load instruction initiates the establishment of check-

point, the ROB entry reserved by that load is not released until the completion of checkpointing

process. The instructions following the "checkpointing load" (load instruction that triggered

checkpointing process) might be dependent upon its result, and hence will be stalled. Eventu-

ally the entire ROB fills up, and the processor stalls until the competition of the checkpointing

operation.

Both load and store checkpoints are initiated because of the replacement of dirty lines.

Therefore, these checkpoints are called replacement checkpoints.

When there is a need to establish a checkpoint, for any of the above-mentioned reasons,

the following operations are carried out by the processor.

1. Flush all the unchangeable lines in data-cache or CBC (if any), to the main memory.

2. Validate entries in the original register file and all the dirty cache lines.

3. Mark all the dirty lines to unchangeable.

4.3 Recovering form a fault situation

Whenever a fault is detected, during the verification stage of a checkpoint, the following

steps are taken to return the processor to the fault free state.

1. All the unchangeable cache lines either in data-cache or CBC (here the cache and memory

are assumed to be reliable), if any, are written back to the memory.

2. The entire ROB is flushed.

3. All the cache lines in data-cache and CBC are marked invalid.

4. The backup register file is copied to original register file.

www.manaraa.com

27

At this point, the processing state is rolled back to the last fault free state. All memory

locations, as seen by the processor, are the same as they were when the last checkpoint was

established.

www.manaraa.com

28

CHAPTER 5. Evaluation and Results

5.1 Simulation

Previous works on checkpointing cache architecture only use program traces of memory

accesses [12, 13, 15]. Their results don't take into account the effect of checkpointing on the

instruction execution. In our research, we have used simplescalar tool set 3.0 [19] that simu-

lates out of order superscalar processor, using spec95 and spec2000 [20] binaries as the input

program to the simplescalar "processor." Therefore, the results generated by our experiments

are representative of the overall affect of checkpointing on the performance due to various

parameters of the processor.

The original simplescalar simulator assumes a totally fault free environment, and doesn't

simulate any fault detection or correction mechanism. Changes were made to the base simulator

to incorporate checkpointing mechanisms in it. To achieve this, cache.c, cache.h and sim-

outorder.c were modified, and the modified simulator is called sim-check.

Three types of processors, based on simplescalar tool set, are used for experiments. The

first processor assumes a fault-free environment. Therefore, this simulator (named sim-fault-

free) has no fault tolerant features built into it. The second processor uses CARER cache

architecture, and perform checkpointing as described in the Section 3.2 to cover the faults.

The sim-check simulator has been modified to develop sim-CARER . The procedure of check-

pointing is changed so that the dirty cache lines would only be marked unchangeable, instead of

flushing on every checkpoint. The third processor uses CBCA cache architecture (Section 3.3)

to reduce the number of checkpoints. This simulator is developed based on the sim-CARER.

Modifying the cache files so that the simulator copies the replaced the dirty lines to the CBC,

instead of taking a checkpoint on every replacement. This simulator is called sim-CBCA.

www.manaraa.com

29

Table 5.I shows the simulator parameters that are common to all the architectures (i.e.

sim-fault-free, sim-CARER, and sim-CBCA).

Table 5.I Input parameters to the simplescalar simulator

Parameter Value
Instruction Fetch Queue Size 4
Decode width 4
Issue width 4
Commit width 4
RUU size I6
LSQ size 8
DI-Cache Sets I28
DI-Cache line size 32 Bytes
DI-Cache Associatively 4-way
DI-Latency I
II-Cache Sets 5I2
II-Cache line size 32
II-Cache Associatively I-way
II-Latency I
D2-Cache None
I2-Cache None

SPEC95 and SPEC2000 programs were used. PISA little-end binaries obtained from [I9].

Simulations are run on a Linux workstation. Each benchmark on the simulator is run for 200

million instructions [24) with parameters shown in Table 5.1.

5.2 Results and Discussions

Checkpointing comparison

Figures 5.I, 5.2, and 5.3 show the variation in the number of checkpoints for various

CBC sizes while executing various benchmarks. For each benchmark the number of check-

points obtained has been normalized with the number of checkpoints obtained for CARER

architecture. The figures show that the number of checkpoints required for programs exe-

cuting on a processor based on checkpointing buddy cache architecture is less than number of

www.manaraa.com

30

Checkpointings Comparison El CARER

•cBC#1

CJCBC#2

CJCBC#4

•cBC#B

BICBC#16

gee go m88ksim perl •cBC#32
SPEC95 Integer Benchmarks

Figure 5.1 Comparison of number of Checkpoints between different cache
architectures using spec95 Integer benchmarks

Checkpointings Comparison II CARER

•CBC#1

CJCBC#2

CJCBC#4

•cBC#8

DCBC#16

applu a psi fpppp hydro2d mgrid su2cor swim tomeatv turb3d waves
•cBC#32

SPEC95 Floating Point Benchmarks

Figure 5.2 Comparison of number of Checkpoints between different cache
architectures using spec95 floating point benchmarks

checkpoints required for the programs executing on a processor based on CARER. There is

a clear decrease in number of checkpoints as the CBC size is increased from 0 (CARER) to

32. This decrease is linear in most of the benchmarks. For some floating-point benchmarks

like fpppp, tomcatv, turb3d and wave5, the decrease is considerable, but saturates with the

higher CBC size. The benchmark Hydro2d requires a smaller number of interrupt checkpoints,

and much smaller number of replacement checkpoints. Therefore, there is no decrease in the

number of checkpoints as the size of CBC is increased beyond one. The benchmark m88ksim

has very large number of interrupt checkpoints whereas its replacement checkpoints are very

small. Therefore, there is almost no decrease in its number of checkpoints, with the increase

in the CBC size.

www.manaraa.com

31

Checkpointings Comparison
1.2 T"'""----------------......... mcARER

CJCBC#2

IJCBC#4

•cBC#8

llCBC#16

gccOO gzipOO mcfOO vprOO mesaOO ammpOO
•CBC#32

SPEC2000 Benchmarks

Figure 5.3 Comparison of number of Checkpoints between different cache
architectures using spec2000 benchmarks

Research herein shows that the number of checkpoints needed for programs running on the

CBCA based processor is less than the number of checkpoints needed for programs running on

CARER. In Section 3.2.1.2, it was discussed that the predictability of execution time decreases

with the increase in the number of checkpoints because of the unpredictable stall time of

the checkpoint. The average stall time in case of CBCA based processor is less than the

conventional cache checkpointing processor. Therefore, the execution time for the programs

running on CBCA based processor is more predictable than on CARER based processor.

There is an overall trend of decrease in the number of checkpoints with the increase in the

CBC size. However, actual decrease depends upon the number of replacement checkpoints in

non-CBC architecture. This finding follows Amdahl's law, i.e., if the number of replacement

checkpoints is more than the number of interrupt checkpoints, the overall decrease in the

number of checkpoints is significant.

www.manaraa.com

32

Miss rate comparison

Figure 5.4 Comparison of cache miss rate between different cache architec-
tures using spec95 Integer benchmarks

Miss-rate Comparison 13 sim_fault_free
1.1

•CARER

~ 0.9 CCBC#1
~ 0.8

DCBC#2 :ii 0.7 ..
-~o.6
Ill •cBC#4

~0.5
llCBC#8

0.4

0.3 •CBC#16
gee go m88ksim pert

DCBC#32
SPEC95 Integer Benchmarks

Figure 5.5 Comparison of cache miss rate between different cache architec-
tures using spec95 floating point benchmarks

Miss-rate Comparison a sim_fault_free
1.1

•CARER

0.9 CCBC#1
0.8

0.7
CCBC#2

0.6 •CBC#4

0.5
13CBC#8

0.4

0.3 •cBC#16

applu a psi fpppp hydro2d mgrid su2eor swim tomeatv turb3d waves
CCBC#32

SPEC95 Floating Point Benchmarks

Figures 5.4, 5.5, and 5.6 show the variation in the cache miss rate for various CBC sizes

and sim-fault-free while executing various benchmarks. For each benchmark the cache miss rate

for different architectures has been normalized with the miss rate obtained for sim-fault-free.

The cache miss rate for sim-CBCA is less than the cache miss rate for sim-fault-free and

sim-CARER. The miss rate decreases with the increase in the size the CBC size. The trend

is different for different applications. For example, in the benchmarks like li, m88ksim, perl,

applu, hydro2d, mgrid, swim and turb3d, the decrease is not very significant. However, the

decrease in the miss rate is significant for other benchmarks. The dirty cache line that is to

www.manaraa.com

0.9

0.8

0.7

0.6

0.5

0.4

0.3
gccOO gzipOO

33

Miss-rate Comparison

mcfOO vprOO mesaOO ammpOO

SPEC2000 Benchmarks

Ellsim_fault_free

•CARER

CCBC#1

CCBC#2

•cBC#4

l'.ICBC#8

•cBC#16

CCBC#32

Figure 5.6 Comparison of cache miss rate between different cache architec-
tures using spec2000 benchmarks

be replaced from the data-cache is placed in the CBC and when the processor accesses that

line again, its request is serviced by the CBC and no cache miss is generated. However, the

decrease in miSs rate depends on the actual use of data in the replaced lines. The decrease in

the miss rate for the various benchmarks also helps in overall improvement in the performance

of the processors.

www.manaraa.com

34

Execution cycle comparison

Cycle Comparison ISi sim_fault_free
1.04

1.02 •CARER

. CICBC#1 ..
0 lS 0.98 CICBC#2 ..
-~ 0.96

•cBC#4 Ill
"ii
a: 0.94

13CBC#8
0.92

0.9 •cBC#16

gee go Ii m88ksim perl DCBC#32 SPEC95 Integer Benchmarks

Figure 5. 7 Comparison of number of Checkpoints between different cache
architectures using spec95 Integer benchmarks

Cycle Comparison
1.1 -------------------------.........

1.08 +--------------------------------

1.06 +----

:t 1.04+----
~ 1.02 +-mn..--
0
.. 1
>
:; 0.98
"ii a: 0.96

0.94
0.92
0.9

applu apsi fpppp hydro2d mgrid su2eor swim tomeatv turb3d waves
SPEC95 Floating Point Benchmarks

II sim_fault_free

•CARER

CICBC#1

CCBC#2

•CBC#4

13CBC#8

•CBC#16

DCBC#32

Figure 5.8 Comparison of number of Checkpoints between different cache
architectures using spec95 floating point benchmarks

Redundancy is used to improve the reliability of a system. The redundancy can be in

the form of extra hardware or extra execution time. In either case the performance of the

system decreases as compared to the base system. Subsequently, checkpointing being a time

redundancy technique is expected to affect the performance of the system. The following

paragraphs discuss the impact the CBCA has on the performance of the system as compared

to the classical cache checkpointing architecture.

Figures 5.7, 5.8 , and 5.9 illustrate the impact of cache checkpointing on the performance

www.manaraa.com

35

Cycle Comparison llsim_fault_free
1.02

•CARER

_; 0.98
CCBC#1

u >- CCBC#2 (J
.. 0.96
.ii!:
Ci •CBC#4
~ 0.94

DCBC#B
0.92

0.9 •cBC#16

gccOO gzipOO mcfOO vprOO mesaOO ammpOO CICBC#32 SPEC2000 Benchmarks

Figure 5.9 Comparison of number of Checkpoints between different cache
architectures using spec2000 benchmarks

of the system. It can be seen the CARER degrades the performance for most benchmarks.

However, the impact of CBC can be seen to be less degrading as compared to the CARER

scheme. Further, this degradation in the system performance is reduced with the increase in

the CBC size. For each benchmark the execution cycles obtained for different architectures

has been normalized with the execution cycles obtained sim-fault-free.

With the exception of m88ksim and hydro2d that do not have significant number of re-

placement checkpoints, other benchmarks show improvement in the number of execution cycles

over CARER scheme, depending on the number of decrease in the checkpointing and miss rate.

In the previous paragraphs, it has been shown that the number of checkpoints as well as miss

rate improves as the CBC size increases. The improvement of the execution cycles depends

on, according to Amdahl's law, the actual fraction of time these two factors represent. The

graphs show performance improvement for most the benchmarks. They show that the number

of execution cycles for checkpointing buddy cache architecture become similar to non-fault

tolerant processor with increase in the CBC size.

www.manaraa.com

36

5.3 CBCA access time

In section 3.3, we discussed that data-cache is working in parallel with a small fully associa-

tive cache. Therefore, the overall access time for the entire cache system would not increase.

To verify this hypothesis, Cacti 2.0 was modified to include CBC working in parallel with

data-cache. Modified simulator takes, data-cache as well as CBC parameters as input. The

program calculates overall access-time for the cache system, and individual access-times for

data-cache and CBC.

Table 5.2 Input parameters to modified Cacti simulator

Parameter Value
Technology 0.18 micron
Number of read/write ports 2
Data-cache size 16KB
Data-cache line size 32B
Data-cache Associativity 4
CBC line size 32B
CBC size 32B, 64B, 128B, 256B,

512B 1024B
CBC Associativity DM, 2, 4, 8

16, 32

Table 5.2 shows different parameters used for calculating access-time for different check-

pointing buddy cache architectures.

Figure 5.10 shows the comparison between the access-times of the data-cache and CBC

of different sizes. Access time for CBC increases as the size of CBC is increased. For the

CBC size of up to 16 lines the access-time of the CBC is less than data-cache. Therefore, the

access-time of overall cache unit (CBCA) is equal to access time of data-cache. However, the

access-time for the CBC of size 32 lines is 43% greater than the access time for the data-cache,

making the access-time for CBCA equal to access-time for CBC-32. Therefore, increase in the

CBC size should be limited to 16 lines.

www.manaraa.com

CBC(32)

CBC(16)

CBC(8)

CBC(4)

CBC(2)

CBC(1)

data-cache(4)

0

37

Access-Time Comparison

0.5 1.5

Access-time (ns)

2

Figure 5.10 Comparison among access time of data-cache and CBC of dif-
ferent sizes

2.5

www.manaraa.com

38

CHAPTER 6. Conclusion

In this thesis a new cache checkpointing scheme was developed. It was observed that

writing modified cache lines, that are needed to be replaced to the main memory, to a fully

associative cache buffer (CBC) would decrease the number of checkpoints by 103 to 803

as compared to existing cache checkpointing schemes. Checkpoint is only established once

the CBC is filled with dirty lines. The processor accesses the data-cache as well as CBC

concurrently. Therefore, no miss is generated whenever the processor requests for the data

from a line that is present either in the data-cache or in the CBC. The mechanism decreases

the cache miss rate for various benchmarks executing on the CBCA-based processor up to

263 as compared to the base architecture. Whenever an error is detected, the processor can

rollback to fault free state by copying the contents of backup register file to the original register

file, and invalidating all the dirty lines in data-cache as well as in CBC. It was also found

that the performance degradation for the CBCA-based processor is less than the performance

degradation for classical checkpointing architecture. The performance of the overall system

improved with the increase in the CBC size.

It was also observed that the number of lines in the CBC couldn't be arbitrarily increased.

It was found that the access time for the fully-associative CBC of size 32 lines is larger than the

access time of data-cache by 433, which might lead to increase in the cycle time of the system.

The access time for CBC of size up to 16 is less than the access time for data-cache. Therefore,

the overall cycle time of the processing system is not affected. When fault tolerant schemes are

applied to a system, the performance of the system decreases. Checkpointing, being a time-

redundant scheme, greatly affects the performance of the system. It was found that the CBCA

based processor provides better performance as compared to classical cache checkpointing

www.manaraa.com

39

scheme. The performance is similar to the base architecture for most of the benchmarks.

The CBCA based processor takes less number of cycles to execute some benchmarks like perl,

wave5, mcfOO and mesaOO than the base processor.

Checkpointing buddy cache architecture is a step toward balanced checkpointing because it

eliminates unnecessary checkpoints while maintaining the ones that are necessary to minimize

the computational loss in case of faults. The decrease in the number of checkpoints causes

the inter-checkpoints interval to increase, thus causing more unchangeable lines to be written

back to main memory before the establishment of the next checkpoint. This phenomenon

decreases the average time to establish a checkpoint. Because of the unpredictable nature

of the checkpoint the conventional cache checkpointing architectures are not suitable for real

time applications, as they require the establishment of a lot of checkpoints. However, check-

pointing buddy cache architecture based processors with their balanced checkpoints, are more

suitable for reliable, real time applications as compared to conventional cache checkpointing

architectures.

www.manaraa.com

40

BIBLIOGRAPHY

[1] C. B. Robert, "Soft Errors in Advanced Semiconductor Devices-Part I: The Three Ra-

diation Sources,'' IEEE trans. on Device and Materials Reliability, Vol.1, pp 17-22,March

2001.

[2] S. Broker, "Design Challenges of Technology Scaling," IEEE Micro 19, pp 23-29, March

1999.

[3] P. Hazucha P., C. M. Svensson, and S. A. Wender, "Cosmic-Ray Soft Error Rate Charac-

terization of a Standard 0.6-mu/m CMOS Process," IEEE Journal of Solid State Circuits,

Vol. 35, No. 10, pp 1422-1429, 2000.

[4] C. L. Chen and M. Y. Hsiao, "Error-Correcting Codes for Semiconductor Memory Appli-

cation: A State of Art Review,'' In Reliable Computer Systems - Design and Evaluation,

Digital Press, 2nd edition, pp. 771-786, 1992.

[5] A. M. Saleh, J. J. Serrano and J. H. Patel, "Reliability of Scrubbing Recovery-Techniques

for Memory Systems," IEEE Transactions on Reliability, Vol. 39, No. 1, pp. 114-122, April

1990.

[6] J.A. Stankovic and K. Ramamrithan, "What is Predictability for Real Time Systems?"

Real-Time Systems, No. 2, pp. 247-254, 1990.

[7] Tzi-cker Chiueh, "Stonehenge: a Fault-Tolerant Real-Time Network-Attached Storage

Device,'' Hot Interconnects 9, 2001, pp. 57-61, 2001.

[8] P. Richardson, L. Sieh, and A. M.Elkateeb, "Fault-Tolerant Adaptive Scheduling for Em-

bedded Real-Time Systems," IEEE Micro, Vol. 21, No. 5, pp. 41-51, Sep-Oct. 2001.

www.manaraa.com

41

[9] Y. Wu, "Evaluation of Write-Back Caches for Multiple Block-Sizes", In Proceedings of the

Second International Workshop on Modeling, Analysis, and Simulation of Computer and

Telecommunication Systems, 1994 MASCOTS, pp 57-61, 1994.

[10] Y. C. Chen and A.V. Veidenbaum, "An Effective Write Policy for Software Coherence

Schemes," In Proc. of Supercomputing '92, pp. 661-672, 1992.

[11] D. P. Siewiorek, and S.S. Robert, "The Theory and Practive of Reliable System Design,''.

Digital Press, 1982.

(12] P. L'ecuyer and J. Malenfant, "Computing Optimal Checkpointing Strategies for Rollback

and Recovery Systems,'' IEEE Transaction on Computers, pp 491-496, April. 1988.

[13] Y. Tamir, M. 'fremblay, and David A. Rennels, "The Implementation and Application of

Micro Rollback in Fault-Tolerant VLSI System," The International symposium on Fault-

Tolerant Computing, pp. 234-239, 1988.

[14] W. S. Wong and R. J. T. Morris, "Benchmark Synthesis Using the LRU Cache Hit Func-

tion," IEEE Transactions on Computers, Vol. 37, No. 6, pp. 637-645, June 1988.

[15] B. H. Douglas and P. N. Marinos, "A General Purpose Cache-Aided Rollback Error and

Recovery Systems,'' The 17th International symposium on Fault-Tolerant Computing, pp.

170-175, 1987.

[16] Ho-Shyan Lin, "High-Performance Comparison-Based Cache-Aided Rollback Error Re-

covery Computing System," MSc Dissertation, University of Washington, 1989.

[17] D. W. Anderson, J. Sparacio, and T. M. Tomasulo, "The IBM 360 Model 91:Processor

Philosophy and Instruction Handling,'' IBM J. Research and Development, pp. 8-24.

[18] J. E. Smith and A. R. Pleszkun, "Implementing Precise Interrupts in Pipelined Proces-

sors,'' IEEE Trans. On Computers, Vol. 37, No. 5, pp. 562-573, May 1988.

[19] www.simplescalar.com

www.manaraa.com

42

[20] www.spec.org

[21] P. A. Lee, N. Ghani, and K. Heron, "A Recovery Cache for the PDP-11," IEEE transaction

on Computers, Vol. C-29, No. 6, June 1980.

[22] R. E. Ahmed, "Checkpointing and Error Recovery in a Uniprocessor System with On-chip

Cache," Canadian Conference on Electrical and Computer Engineering, 2001 , Vol. 1, pp.

417 - 422, 13-16 May 2001.

[23] R.E. Ahmed, R.C. Frazier and P.N. Marinos, "Cache-Aided Rollback Error Recovery

(CARER) Algorithm for Shared-Memory Multiprocessor Systems," The 20th Interna-

tional Symposium on Fault-Tolerant Computing, pp. 82-88, 1990.

[24] S. Kim and A. K. Somani, "SSD: An Affordable Fault Tolerant Architecture for Super-

scalar Processors," Proceedings of Pacific Rim International Symposium on Dependable

Computing, pp. 27-34, 2001.

[25] J. B. Nickel, and A. K. Somani, "REESE: a Method of Soft Error Detection in Micro-

processors," Proceedings of The International Conference on Dependable Systems and

Networks , pp. 401-410, June 2001.

[26] K. L. Wu, W. K. Fuchs, and J. H. Patel, "Error Recovery in Shared Memory Multipro-

cessors using Private Caches," IEEE Transactions on Parallel and Distributed Systems,

Vol 1, Issue 2, pp 231-240, April 1990.

[27] P.A. Bernstein, "Sequoia: a Fault-Tolerant Tightly Coupled Multiprocessor for Transac-

tion Processing," Computer, Vol. 21, Issue 2, pp. 37-45 Feb. 1988.

www.manaraa.com

43

ACKNOWLEDGEMENTS

I would like to thank Dr. Arun K. Somani, my major professor, for his kind guidance,

patience and constant support during this research. I would also like to thank Dr. Akhilesh

Tyagi and Dr Govindarasu Manimaran who expressed their interest in my work and helped me

by giving a number of suggestions and ideas. I would like to thank all the members of DCNL

for providing me support and help throughout the course of my master program.

I would also like to mention that National University of Science and Technology, Pakistan,

sponsored my graduate studies in USA. I am thankful to them for providing me with this

opportunity.

I am grateful to my parents for their patience and love. Without their prayers this work

would never have completed. I would also like to thank all my friends for their constant

support.

Adeel Israr,

Ames, Iowa,

October 18, 2002

	CBCA: balance cache checkpointing for superscalar processors
	Recommended Citation

	CBCA: Balance Cache Checkpointing for Superscalar processors

